
pancake

Lacon 2015

Emulating Code In Radare2

Overview
Emulation allows us to simulate the execution of code of the same or different CPU in

order to understand what a specific snippet of code is doing or avoid the common risks

running native code have (malware, etc).

This technique have been used to run games from old consoles.

But there have been used too in debuggers and code analyzers in order to ease the

understanding

Overview

But it’s in fact way more than just this.

- CPU / FPU

- MMU (pagination, permissions, ...)

- Exceptions, Traps, Etc

- Syscalls

- System Libraries

- Devices

Understanding the problem
Emulate CPU

Requires lot of arch-

specific code that needs to

be rewritten for each

architecture, and if we

want to be really fine-

grained for each CPU

model.

Performance

This is important to run

games, or huge pieces of

code (like an entire

operating system).

Implies JIT and increases

security risk.

Intermediate Language

Emulators are usually

implemented at low level,

and that makes internal

representation not

available for deeper

analysis of code.

How To Solve All Those Problems?

Just use R2… but how?

Strings

Evaluable
Strings

Intermediate
Language

I defined a forth-like programming

language to describe what every

instruction of every CPU does. Some

kind of micro-code.

It can be extended with native plugins

to create new commands, hook on

events, implement syscalls, etc

Why
Strings?

Strings are human-friendly.

Easy to generate, parse and modify.

Extensible by definition.

Can be redefined by the user.

Easy to translate to other forms.

How Does It Look?

sub rsp, 0x648

1608,rsp,-=,$c,cf,=,$z,zf,=,$s,sf,=,$o,of,=

Easy To Translate: REIL

ESIL is managed in r2 with the `ae` command.

Other Translations

Radeco is the experimental decompiler for r2, it

is written in Rust, as part of the GSoC-2015, and

performs several computations like SSA, DCE,

Constant Propagation and Verifications and can

output the results in C-like form or graph.

Current Applications For ESIL in Radare2
Code Emulation

● Emulate a block of code

● Used in real malware samples to decrypt

Search Conditions

● Evaluate an ESIL expression on every offset

● Useful for complex conditionals in exploiting

Branch Prediction

● Linear emulation: e asm.emu

● Catch data refs, conditional branch, reg calls..

Assisted Debugging

● Implements Software Watchpoints

● Step in every instruction and evaluate ESIL

VM Emulation

● Fully emulates Baleful VM

● Can easily support Themida or ZeusVM

Current Applications For ESIL in Radare2

Code Analysis

● a2f

● Used in real malware samples to decrypt

Decompilation

● Creates AST from ESIL

● Feeds the passes with info from r2

And More! ● ...

Expression Dependencies
Registers

This is handled by the r_reg API from r2.

● Profile defined in plain text, supports

packed register, overlapped, bitfields,

and more!

● Reimplemented in Rust for Radeco.

● Each expression needs to know the

offset where it is.

● ESIL have its own internal registers

prefixed with ‘$’

Memory

Served by the r_io API.

● Virtual/Physical addresses

● Page protections and exceptions

● Allows to map different files and data

at different virtual addresses.

● Emulate the Stack, Heap and BSS

● Loaded from RBin by default.

● io.cache to avoid real memory writes

Hooks
ESIL API permits to hook on

every internal step of the

expression evaluation.

● register read / write

● memory read / write

● trap / exception

● syscalls

● scriptable with r2pipe

● custom/unknown instruction

Architectures

Does not yet supports all

instructions, but basic ones are

enough for most uses, and grows

every day a bit depending on user

needs.

● Arm, Thumb, Aarch64

● Mips

● GameBoy/z80

● Powerpc

● 8051

● 6502

● Avr

● X86 (32, 64)

● Brainfuck

● Baleful

● H8300

Last Blackhat, the Capstone guy

presented the Unicorn project that

aims to be like ESIL:

● Using qemu as code base (not in sync)

● GPL (licensing problems)

● Provides API and bindings (Go, Java, Py)

● Cannot emulate dynamic VMs

● Uses JIT (-secure, +slower, complexity++)

● Not yet released

● Register profiles are static

● Emulates MMU with generic io api

● No IL access

● No memory cache

● Hard to implement new archs

Alternatives?

Unicorn Also Works in R2 (radare2-extras/unicorn)

Demo Time!

e asm.emu=true

cd radare2-bindings/r2pipe/nodejs/examples/syscall
 -> emulates shellcode + syscalls using r2pipe and esil

Thanks For Listening!

Questions?

