\/

(4
Emulating Code In Radare2

pancake
Lacon 2015

Overview

Emulation allows us to simulate the execution of code of the same or different CPU in
order to understand what a specific snippet of code is doing or avoid the common risks
running native code have (malware, etc).

This technique have been used to run games from old consoles.

But there have been used too in debuggers and code analyzers in order to ease the
understanding

Overview

But it’s in fact way more than just this.

HoLp | BETENT

\
bEd

CPU /| FPU
MMU (pagination, permissions,

\

\

lee
[
lm
o

Exceptions, Traps, Etc

T90d

\

Syscalls

\

System Libraries

\
gl

Devices

01Ny IIA

zez

fort sl SR polor | ofs

Understanding the problem

Requires lot of arch-
specific code that needs to
be rewritten for each
architecture, and if we
want to be really fine-
grained for each CPU
model.

This is important to run
games, or huge pieces of
code (like an entire
operating system).

Implies JIT and increases
security risk.

Emulators are usually
implemented at low level,
and that makes internal
representation not
available for deeper
analysis of code.

How To Solve All Those Problems?

Just use R2. .. but how?

Evaluable
Strings

Intermediate
Language

I defined a forth-like programming
language to describe what every
instruction of every CPU does. Some
kind of micro-code.

It can be extended with native plugins
to create new commands, hook on
events, implement syscalls, etc

Why
Strings?

Strings are human-friendly.
Easy to generate, parse and modify.
Extensible by definition.

Can be redefined by the user.

Easy to translate to other forms.

How Does It Look?

sub rsp, 0x648
1608,rsp,—=,$c,cf,=,$z,2f,=$s,5f,=,$0,0f =

Easy To Translate: REIL

[0x100001058]> aetr 2,3,+,4,*,rax,=

0000.00: ADD 3:64 , 2:64 , V_00:64
0001.00: MUL 4:64 , V_00:64 , V_01:64
0002.00: STR R_rax:64 , ’ V_02:64
0002.01: STR V_01:64 , ’ R_rax:64

[0x100001058]1> |

ESIL is managed in r2 with the "ae’ command.

Other Translations

Radeco is the experimental decompiler for r2, it
is written in Rust, as part of the GSoC-2015, and
performs several computations like SSA, DCE,
Constant Propagation and Verifications and can
output the results in C-like form or graph.

Current Applications For ESIL in Radare2

e LEmulate a block of code

Code Emulation e Used in real malware samples to decrypt

- e Evaluate an ESIL expression on every offset
Search Conditions

e Useful for complex conditionals in exploiting

e Linear emulation: e asm.emu

Branch Prediction e Catch data refs, conditional branch, reg calls..

e Implements Software Watchpoints

Assisted Debugging e Step in every instruction and evaluate ESIL

e Fully emulates Baleful VM

VM Emulation e Can easily support Themida or ZeusVM

Current Applications For ESIL in Radare2

a2f

Code Analysis Used in real malware samples to decrypt

o Creates AST from ESIL
Decompilation

Feeds the passes with info from r2

Expression Dependencies

Registers Memory
This is handled by the r_reg API from r2. Served by the r_io APL
e Profile defined in plain text, supports e Virtual/Physical addresses
packed register, overlapped, bitfields, e Page protections and exceptions
and more! e Allows to map different files and data
e Reimplemented in Rust for Radeco. at different virtual addresses.
e Each expression needs to know the e Emulate the Stack, Heap and BSS
offset where it is. e Loaded from RBin by default.
e ESIL have its own internal registers e jo.cache to avoid real memory writes

prefixed with ‘$’

Hooks

ESIL API permits to hook on
every internal step of the
expression evaluation.

register read [write
memory read [write
trap / exception
syscalls

scriptable with r2pipe

custom/unknown instruction

Architectures

Does not yet supports all
instructions, but basic ones are
enough for most uses, and grows
every day a bit depending on user
needs.

Arm, Thumb, Aarch64
Mips
GameBoy/z80
Powerpc

8051

6502

Avr

X86 (32, 64)
Brainfuck
Baleful
H38300

Alternatives?

Last Blackhat, the Capstone guy

presented the Unicorn project that
aims to be like ESIL:

Using gemu as code base (not in sync)
GPL (licensing problems)

Provides API and bindings (Go, Java, Py)
Cannot emulate dynamic VMs

Uses JIT (-secure, +slower, complexity++)
Not yet released

Register profiles are static

Emulates MMU with generic io api

No IL access

No memory cache

Hard to implement new archs

pair:pe pancake$ r2 -D unicorn /bin/ls
[UNICORN] Using .71\;1.; x86 bits 64

-

O
_-- l(\\ \ S
o' A\),/ 7
TIYTN
! ./:::::t“zb\
ARXYS AN \
/ 22 e “e
:s::\ e\
\ s22's_ —
Noe/|eerea._ T)/
\al \z(-\
S

. ...)
\3' -- ..333,
.\::::: .:::t/
:):::: .t2j22'
O\I"'IIO
dpa # reatach to initialize the unicorn
dr rip=entry0 # set program counter to the entrypoint
No code mapped into the Unicorn. Use “dpa” to attach and transfer
Set Program Counter 0x00000000
ICORN] Define 64 KB stack at 0x07000000
Debugging pid = 8, tid = 8 now
-- Show oiiam in graphs with 'e graph.offset = true'

Demo Time!

rl, [r0]
mov r0, rd
blx sym.imp.objc_msgSend

.

mov rU, rd
blx sym.imp.objc_release

-

e asm.emu-true o e

H

.

r

add r), PC H
sl, [x0] H

mov r k, ra :
mov H

ri, 81
blx sym.imp.objc_msgSend

mov r/, r’ FH
blx sym.imp.obijc retainAuto

rl=0x7fe3feedface -> Oxf£f£f£££00
r0=0x0

; lr=0x14e92 -> 0x£f1904600; pc=0x%9a537c
r0=0x0

; lr=0x14e98 -> 0x10acf600; pc=0x%a53cc
r0=0xf%ac -> 0x£1954600

r0=0xe0f%ac -> 0xb67400

r0=0xe24850 -> 0xa71c00
sl=0x7fe300a71c83 -> Oxf£f££f£ff00

r0=0x0

rl=0xa71c83 "topBorder"

; lr=0xl4eae -> 0x£f1904600; pc=0x%a537c
r7=0x0
releasedReturnValue

cd radare2-bindings/r2pipe/nodejs/examples/syscall

-> emulates shellcode + syscalls using

r2pipe and esil

Thanks For Listening

Questions?

