
r2@snow

Who am I?

●
●
●
●
●
●

○
○
○

What’s r2?

● Free / Libre Reverse Engineering framework
○ Libs, apis, cmds, scripts, pipeable programs, ..

● Unix-like design, aims to be orthogonal
● Focus on API, cmdline tools and bindings
● Some GUIs already available, no one complete
● Package manager to install plugins and dependencies
● Always refactoring and releasing every 6 weeks
● Enforces test suite, code reviews and fuzz
● 11 year old project, Release every 6 weeks

What’s this talk about?

●
●
●
●

○
○
○
○

Target Device

Cheap Chinese clones of HYTERA
(60€-100€) DMR/NFM

● Retevis RT3 / RT8 (GPS)
● TYT MD380 / MD 390 (GPS)
● Zastone D900
● Chielda D200
● VITAI VDG-385
● Juentai JD-780
● SAMCOM DP-20
● HYDX D50
● Radioddity GD-55

Not HJKL friendly

Really confusing

Target Architecture

● ARM STM32F405 Microcontroller
○ Cortex-M4, Fpv4-sp-d16 FPU
○ Instructions to sha, cry, md5, aes, 3des, print

● Supports ARM, Thumb and Thumb2
● 1MB Flash memory
● 192KB of RAM
● HR C5000 Radio Baseband peripheral
● IO / Ports

○ 1x LCD, 3 SPI, 4 UART, 3 I2C, 2 CAN, SDIO
○ 2x USB OTG
○ 10/100 Ethernet

Radare2

Free/Libre multi - {arch, platform, paradigm,
language, user} Unix-like Reverse Engineering
Framework.

● Compact mnemonic commands shell
● Scriptable via bindings, pipes, batch
● CLI, Visual, WebUI and some native GUIs
● Written in C, portable and fast
● Huge and passionate community
● Implementation in separated libraries
● Extensions implemented as plugins
● Very customizable and versatile

Libraries

●
●
●
●
●

● RBin/RFs parses headers (executable file formats, partt)
● RIO abstracts open/read/write/close (everything is a file)
● RAsm/RAnal implements archs (asm, disasm, analyze, emu)
● RDebug/RReg/RBp debuggers (native, gdb, windbg, …)
● RSearch/RMagic match patterns, with mask, aproximation, ..
● RUtil base library on top of libc

Targets

● Linux, Windows, Mac, iOS, Android, QNX
● x86, mips, arm, arm64, sparc, powerpc, avr, 6501, ..
● ELF, mach0, PE, DEX, ART, Wasm, Swf, COFF, Plan9, …

Common use cases

● Solve crackmes
● Cooking ROP payloads
● Exploiting router vulnerabilities
● Analyze Windows, Linux, Android, iOS malware
● Reverse engineer unknown file formats
● Carve disk/memory for needles
● Recover deleted files
● Bypass security protections
● Find vulnerabilities in software
● Debug crashes

Scripting

●
●
●
●

○
●

○
○

● Mnemonic and compact command shell

● Supports #! hashbang with r2pipe and rlang

● Emscripten r2core.js

● Native bindings with valabind and swig
○ Python, NodeJS, Perl, Java, C#, Ruby, ...

● r2pipe / api
○ Faster, support sync/async, in/out/ versatile
○ Multiple transports (pipe, tcp, http, dlsym, …)
○ r2pipe-api is wip high level api on top of r2pipe

Packages and plugins!

●
●
●
●
●
●
●
●

Documentation

● Fully documented in C
● An IRC channel bridged with Telegram

○ About 700 online users

● An official book for r1 and r2
● Code snippets and examples
● Huge testsuite and growing
● Several talks and presentations

○ Official website (pdf)
○ YouTube
○ Blog posts

And now also in QT!

Iaito is the name of the new GUI by Hugo Teso.

● Author of Bokken
● Released two days ago
● Multiplatform (Win/Mac/Lin)
● Free/Libre/OpenSource

https://github.com/hteso/iaito

Iaito (https://github.com/hteso/iaito)

Let’s go practice!

Decrypting the Firmware

● Initial overview with r2
○ Hexdump, visual mode, disassembly, …

> wtf sys.img $s-0x200 @ 0x100

● RBin plugin
○ Identify file format
○ Load sections, requires IO to decrypt

○ Parsing header and dumping

● Xoring
○ rahash2 -E xor -S - < a > b
○ Extract key from pattern

Overview
● Zoom view with pz and pxA (available in VPP)

○ Instruction type map

● Per-block Hash (rahash2)
○ rahash2 -a entropy -Bb 512 jailbreak.bin

● Code/Data Block Statistics with p=
○ Number of printable chars
○ Strings per block
○ Invalid instructions per block
○ Call/Jump
○ Entropy
○ ...

Extracting Strings

● Strings is not able to catch any kanji.
● Supports Ascii, WideChar, UTF8 strings

○ rabin2 -zz newfw.bin | grep =wide
● We can overwrite with code in all that chinese fonts and text regions

Finding the Base Address
● Required to properly read the disassembly
● That’s where the code and data is mapped
● Fixed addresses, no heap or ASLR

● Firmware header contains it
● Pointers in code (code/data references)
● Pointers in data (dwords)
● In the strings of the bootloader

$ rabin2 -qzz bootloader.bin | grep Intern

Memory Layout

● 0xe0000000 - Cortex peripherals
● 0x0800c000 - flash app
● 0x08000000 - boot loader (mirrored at 0)
● 0x40000000 - IO serial/SPI/i2c/USB ports
● 0x20000000 - SRAM
● 0x10000000 - Fast TCRAM (non-executable)
● 0x00000000 - Flash (null deref exploits for fw dumping)

Loading the image

Most people will do:

$ r2 -a arm -b 16 -m 0x0800c000

But we are missing a lot of things in here..

Loading the image

● Loading all images into memory
● Setting the cortex CPU
● Setup two RAM regions
● Emulating memory mapped devices
● ESIL emulation of Thumb2 code
● Force filter search hits aligned to 4 bytes
● Configure sections with iS, S, S=, o.

e asm.section.sub = true

Check load.r2 script

Disassembling
● Thumb2 and Cortex caveats

○ Useful to find points of interest (STI/CLI)
● Symbol information from RBin

○ Not available in raw firmware images
● Code Analysis information

○ Call cross-references
● Data Analysis

○ Pointer dereferences
● Analysis hints

○ ahb 16
○ afb 16
○ e asm.bits=16
○ e asm.cpu=cortex

Jailbreaking

● Modifying bytes to unlock jtag
$ radiff2 bootloader.bin jailbreak.bin

● Can be done by modifying a byte..
> r2 -nw -c 'wx aa @ 0x080044a8' boot.bin

DFU dumping

● Flash memory mapped at 0, null deref bugs can
be used to dump flash memory.

● 48KB of flash to dump the bootloader (..c000)
● DFU protocol available via USB.
● Some tools available in md380re for that
● Write r2 IO plugin

$ r2 dfu://0483:df11

Analysing code

● Don’t use auto analysis
● Basic block graph (VVn)
● Finding functions
● Finding memory accesses
● Finding pointers
● Special instructions
● Identify code / data
● Manual tweaks

Finding Functions

● af
● afr
● e anal.hasnext
● pdf / pdr
● aab / aac / aar / aae

$ r2 -A
● aa
● aaa
● aaaa
● aaaaahhh!

Zignatures

● ‘Z’ chosen because ‘s’ was already taken for seek
● Identify common functions across multiple

firmware versions or builds.
● Supports search.{from,to,in}
● Types of zignatures

○ Array of bytes
○ Analysis bytes with masks
○ Analysis function metrics

● FLIRT is supported.

Thanks Nibble!

Projects and scripts

● Projects are just r2 scripts and k=v dbs

● Run scripts with -i or .
● Save and load projects with P
● Export as r2 commands with *

○ There’s also json output if commands ends with ‘j’

● Xrefs and other heavy info is saved in SDB
(my own k=v db)

String references

Probably the most useful thing when RE to find
interesting blocks of code in your bins.

● Thumb2 instructions are 2 or 4 byte long
● No relocatable code
● Find dwords with /v
● Then find refs with /r

Identifying Memory
Mapped Devices
● Find RW refs /A load

● Identify Cortex instructions

● 0x40000000 - IO peripherals (serial port, gps)
● 0xe0000000 - other memory mapped devices

Use /V4 0x40000000 0x4000f000

Identifying Memory Mapped Devices

●
●

●
●

Identifying Memory Mapped Devices

Emulating Code

● Whats ESIL (Evaluable String Intermediate
Language) ?

○ Stack-based Forth-like VM
○ Catch computed references
○ See values of registers at any time.

● Native debugger with ARM target.
○ Supports backstep, snapshots, threads, ...
○ Can’t run in MD380, needs a gdbstub or so

Extra Resources

● Travis Goodspeed talks at YouTube
● https://www.exploit-db.com/docs/pocorgtfo10.pdf
● https://github.com/roelandjansen/md380tools/

R2

● http://rada.re
● https://github.com/radareorg/r2con/

https://www.exploit-db.com/docs/pocorgtfo10.pdf
https://www.exploit-db.com/docs/pocorgtfo10.pdf
https://github.com/roelandjansen/md380tools/
https://github.com/roelandjansen/md380tools/
https://github.com/radareorg/r2con/blob/master/2016/trainings/04-plugin-esil/slides.pdf
https://github.com/radareorg/r2con/blob/master/2016/trainings/04-plugin-esil/slides.pdf

Questions?

Thanks

●
○

●
●

○
○
○
○
○

