
  

radare
LaCon2008

--pancake



  

radare

Block based command line hexadecimal editor
 - Multiple IO backends
 - Debugger support
 - Configurable hashtable ('-e' flag or 'e' cmd)
 - All commands are single letter (? for help)
 - Flexible command syntax
   > 3pd 20 @@ sym_* > file
- IO plugins also hooks io_system()
   > !contsc write

Screen filtering
 - Output in ascii, ansi, w32 console, html
 - OTF string replacements



  

Networking

Remoting
 - All IO can be wrapped and URIs can be nested
   to use radare remotely. Non-standard IO cmds
   is based on string parsing.

$ radare connect://10.0.3.22:9898/dbg:///bin/ls

IO backend for socket connections
 - Handles a socket as a growing file



  

Hexadecimal editor

Multiple IO backends as plugins
 - posix, ptrace, tcp, haret, w32, ewf, wine, ..

Block based editor
 - Command line and visual interface
 - Zoom out/in for global views
 - p% bar showing info of functions, data, code..

Print modes
 - Different radix bases, timestamps, endian,
   C structs/code, assembly

Undo history
 - For seeks and writes



  

Search engine

Advanced search engine
 - Strings (char, wchar), bytes 
 - Multiple keyword definition
 - Binary masks for each
 - Ranged searchs

Pattern searching
 - Look for byte patterns from a pattern length

Grepping for opcodes
 - pd 0xfff | grep call eax

Expanded AES key search
 - Victor muñoz algorithm used for the Wii



  

Disassembler

Multiple architectures (asm.arch)
 - x86 (16,32,64), arm, mips, sparc, powerpc,
   m68k, java, msil, csr ..

Syntax flavours (asm.syntax)
 - intel, at&t, olly, pseudocode

Basic flow analysis
 - ascii-art jump lines

Metadata
 - Comments, data types, execution traces,
   symbols, flags, easily scriptable



  

Assembler

$ rasm

Multiple arch cmdline assembler/disassembler
 - Allow to define the base address
 - Multiple syntaxis support
 - rsc backend (using NASM or GAS)
 - Pseudo-opcodes for fast patching
 - Raw assembler from files

$ rasm 'mov eax, 33'
b8 21 00 00 00

$ rasm -d 'b8 21 00 00 00'
mov eax,33



  

Code analysis

Function analysis
 - Identify function sizes, local variables,
   stack size, data references.

Basic blocks
 - Uses graph.jmpblocks, .callblocks, ...
 - GUI for graphs

Opcode
 - Jump information, and basic data access
 - Initial work on code emulation (pseudocode)

Data analysis
 - Find string, registers, function pointers



  

Binary diff

$ radiff /bin/true /bin/false

Raw file byte-level diffing
 - byte-per-byte memory comparision
 - Support for delta diff (erg0t, gnu diff)

Code graph differences
 - From imternal graph analysis
 - Import data from IDA
 - Identifies new paths, blocks and local vars



  

Checksumming

$ rahash -s “hello” -a md5

Multiple hash algorithms
 - crc16,32, md4-5, sha1-512, xor parity, mod

Entropy calculation
 - Entropy, energy, hamming distance

Block based checksumming
 - Partial hash for big disk images. (f.ex)
 - Configurable block size
 - Define range of bytes (from, to, length)



  

Rabin

Identify file types
 - Support for ELF, PE, CLASS, MACH-O,..

Extract information
 - Architecture (intel, arm, ..)
 - Imports/exports
 - Sections
 - Linked libraries
 - Strings in .data section



  

Debugger

Ported to multiple OS/arches:
 - GNU/Linux – x86-32,64, mips, arm
 - Net/Free/OpenBSD – x86-32,64
 - MacOSX – x86-32*, powerpc*
 - Solaris – x86-32*, sparc*

Other backends:
 - GDB, GDB remote, WineDBG, GxEmul

Extreme development
 - Needs some refactoring
 - Raw and handy interface

* = work in progress



  

Debugger (2)

CPU control
 - Get/set drx,gp,fp,mm registers and flags

Breakpoints
 - Software/Hardware support
 - Watchpoint expressions

Memory control
 - Alloc/free/mprotect/mmap
 - Dump/restore memory pages

Signal handling
 - Edit event and signal handlers

File descriptors
 - Open, dup, close, seek, socket-connect



  

Debugger (3)

Stepping
 - step, step over, stepbp (mips)
 - skip N opcodes (!jmp eip+x)

Continuations
 - continue until address, fork or event
 - !contsc: syscall tracing

Threads and processes
 - Send events, attach/detach, status

Touch tracing
 - Swap memory filled with traps
 - Trace information available for processing



  

Shellcodes

$ rasc -N 30 -i x86.linux.binsh -c > sc.c

Small database of common shellcodes
 - Multiple output forms
 - Pad generators (A, nops, traps, 1234..)

Support for syscall proxying
 - Also radare with an IO plugin



  

Scripting

$ radare -i unpack.py -d ./target

Multiple language bindings
 - Python, Perl, LUA

API and helpers
 - Code analysis
 - Search
 - Flags, symbol management
 - Debugger access
 - Full control over radare thru
   str=r.cmd(str)



  

The book

http://radare.nopcode.org/get/radare.pdf



  

The human-radare interface



  

The end

Enjoy :)

http://radare.nopcode.org/

pancake@nopcode.org


