
Learning Radare In Practice
Toulouse Hacking Convention

By pancake

Before starting..

WhoAmI

● Author and benevolent

leader of r2

● Free Software developer

● Working at Nowsecure as a

security researcher in

the R+D team

● ~20 years doing low level

stuff, wifi, bt, vx, n900

flasher, acr, valabind..

What Am I Doing Here?

Why Radare2?

● It’s free and open-source

● Runs everywhere (Windows, Mac, Android, GNU/Linux, QNX, Haiku,

iOS, *BSD, ...)

● Easy to script and extend with plugins

● Embeddable

● Grows fast

● Supports tons of file-formats

● Handles gazillions of architectures

● Easy to modify and extend

● Commandline friendly

● Great community and even better leader

● Collaborative

● It’s mine

Introduction
● What is r2?

● How to use the shell

● Analyzing

● Debugging

● Patching

● ScriptingWhat Am I Doing Here?

What is Radare2?

● Reverse Engineering

○ Analyze Code/Data/..

○ Understanding Programs

● Low Level Debugging

○ More close to olly than GDB

○ Multi-platform, and support for remote

● Forensics

○ File Systems

○ Memory Dumps

● Assembler/Disassembler

○ Several architectures

○ Multiplatform

● And more!

History

Radare was born in 2006 (hey this is 12 years!) as a forensic tool

to perform manual and interactive carving to recover some deleted

files from disk or ram.

It quickly grew adding support for disassembler, debugger, code

analyzer, scripting, …

And then I decided to completely rewrite it to fix the maintenance

and monolithic design problems.

We organized the RSoC after being rejected in our first try at

GSoC, which it rules.

After 8 years coding mostly alone, the community grew a lot and I

started switching from developer to maintainer/leader.

r2con

Starting in 2016, in sync with the 10th anniversary of radare2.

● First week(end) of September

● In Barcelona

● No sponsors

● 4 days

● 50e ticket

● Free trainings, talks, hackathons

● R2wars and crackmes competitions

● Friendly environment with chiptune and beers

https://radare.org/con

Tools

Radare2 is composed by some core libraries and a set of
tools that use those libraries and plugins.

 radare2 r2pm rarun2 ragg2

 rabin2 radiff2 rax2 rahash2

 rasm2 rafind2 r2agent rasign2

Tools

● Quick usage example for every tool:
○ rax2, rabin2, rasm2, ...

● Manpages, inline help

(DEMO)

Libraries

RIO abstracts input-output and layouts

RFS abstracts filesystem and partitions access

RBin parses the structure and detects parameters.

RAsm disassembles the code if any

RAnal analyze and emulate to identify functions and refs

RUtil provide common helper functions

REgg generate payloads ready to be injected

RDiff find differences between two sources

RSearch search patterns, magic headers, binmask, ..

RCore uses them all!

The Framework

$ make depgraph.png

● 2015

● 2018

Plugins

Almost all of those libraries can be extended with plugins.
This means, that r2 codebase is pretty modular and you can
do custom builds with your plugins of choice.

Disassemblers, assemblers, header format parsers,
filesystems, analyzers, emulators, debuggers, new commands,
etc..

Can be installed system wide or in user’s home.

What can I inspect?

Targets

R2 can open any file or device via RIO which may access it
from the local filesystem or remotely via rap:// http://
r2pipe:// or any other available protocol.

● Executables / Libraries (disasm + analyze)
● Firmwares (carving known headers)
● Filesystems (mount and walk)
● Raw memory dumps (search strings/data)
● PCAP files (emulate BPF rules)
● Debug info (Dwarf/PDB)

UNIX like

R2 is a big project that does a lot of stuff. This is not
much unix-like, but it aims to be modular, pluggable and
scriptable.

● use of pipes |
● Support for redirections >
● Push into the stdin buffer <
● Use of backticks ‘ like in a posix shell
● Internal filtering ~ (grep, less, …)
● Abstracted IO assumes everything is a file
● pipeable from the shell echo x | r2 -
● Text, JSON and r2 commands output for almost everything
● Simple command structure (mnemonics)
● Auto documented (C, man, ?)
● Almost a posix shell with ls, cp, mkdir, cat, ed..)

UNIX Like

(DEMO)

Documentation
(written in C!)

● If you wanna learn
more, or just curious
on some specific
aspects or usages.

● There are more
resources than just
this talk.

Documentation

● The whole project is documented in C.
○ Badumtsss

● There are 2 books published in gitbook.
○ Radare explorations
○ Official r2 book based on r1 one

● All commands are documented inline
○ just append the question mark

● Many videos in YouTube
○ All r2con talks are uploaded asap

● Many blog posts and articles on the web

● Join the IRC or Telegram to get human driven help

But First.. A Poll!
(who are you?)

Which is your main OS?

Do you know assembly?

How’s your UNIX foo?

Did you used r2 before?

Installation
(always use git)

Stick to your distro
packages and don’t
complain about bugs or
install from Git and get
ready for the awesomeness.

How To Install Radare2

There are several binary distributions of radare2

● LiveCD (unmaintained)

● Docker image

● Vagrant (r2pm -i vg)

● OSX package (on every release)

● Windows Installer (and nightly builds)

● BSD || GNU/Linux (Gentoo, ArchLinux, Void, ..)

● Use the Cloud Web user interface (http://cloud.rada.re)
○ Also works in Google Cloud

● Android app and Termux package

● Cydia package (iOS)

● Chat with the @r2bot on Telegram

http://cloud.rada.re

Installing from Git

$ git clone https://github.com/radare/radare2

$ cd radare2; sys/install.sh

This will install r2 system-wide using symlinks (faster and
handier for development, no make install required after
every change, but risky on multiuser shells)

$ sys/user.sh

$ export PATH=~/bin:$PATH

https://github.com/radare/radare2

Side Notes

Notice that r2 build system is based on:

● ACR (auto-conf-replacement)
● Handmade Makefiles

Plugins can be selected with ./configure-plugins

● Random documentation in doc/ directory
● Several useful scripts in sys/

○ sys/static.sh sys/asan.sh ...

Package Management

We can even install r2 via r2pm and get rid of our r2 dir

$ r2pm -i radare2

$ rm -rf radare2

You can also install other programs, plugins and scripts
with it. Everything in your home by default.

r2pm depends on r2 if you didnt cached the setup options,
this may be improved in 2.5.

Package Management

Some of the most interesting packages:

● Yara 3
● RetDec decompiler (@nighterman)
● Keystone - assemble instructions
● Unicorn - code emulator
● Native Python bindings
● AGC - Apollo 11 CPU
● Duktape (Embedded javascript)
● Radeco decompiler (@sushant94)
● Baleful (SkUaTeR)
● r2pipe apis for NodeJS, Python, Ruby, C#, ...
● Vala/Vapi/Valabind/Swig/Bokken/…
● r2frida

Package Manager

(Demo)

But Hey!

You may probably
want to also install

Cutter

https://rada.re/cutter/
We have a GUI

Cutter

Rebranded Iaito originally written by Hugo Teso

● Multiplatform QT5 gui
○ Windows, macOS, Linux/*BSD/Haiku

● Releases in sync with r2 ones
● Looking for contributors

Cutter: Downloading releases

● Binary builds are published every 6 weeks
● In sync with r2 releases
● You can download them from the github releases page

○ Appimage for Linux
○ Dmg for macOS
○ Wizard installer for Windows

https://rada.re/cutter/

Cutter: Installing from Git

git clone https://github.com/radareorg/cutter

cd cutter

mkdir build

cd build

qmake ..

make -j4

https://github.com/radareorg/cutter

Many Other GUIs

Several GUIs are available, with web technologies, GTK,
blessed, etc.. None of them really get enough traction to be
maintained (or used) actively.

The CLI will always be superior, but for some users it may
be good

Which is Your
Favourite UI?

(Yes, that’s another poll)

● The CLI
● Visual Mode
● Tiled Panels
● WebUI
● Cutter
● R2Pipe

Mine is CLI+Visual

All new features are always accessible thru the command line
interface of radare2.

The testsuite basically tests commands, not api.

The most common actions are integrated into the Visual mode
that can be managed using keystrokes instead of typing
commands.

CLI is expressive and powerful once you understand the logic
behind the commands syntax.

Running r2
man r2

r2 -h

rarun2

Some r2 Command Line Flags

-h # get help message

-a <arch> # specify architecture (RAsm Plugin name)

-b <bits> # specify 8, 16, 32, 64 register size in bits

-c <cmd> # run command

-i <script> # include/interpret script

-n # do not load rbin info

-L # list io plugins

Spawning an R2 Shell

The `r2` command is a symlink for `radare2`:

$ r2 - # alias for `radare2 malloc://1024`

$ r2 -- # open r2 without any file opened

$ r2 /bin/ls # open this file in r2

$ r2 -d ls # start debugging

Files

R2 IO abstract the access to what’s provided by an IO plugin, this

layer allows to:

● Load multiple files and map them at virtual addresses

● Define sections to virtualize the memory layout

● Handle write cache to avoid modifying the original files

● Write operations change the target file

● Specify different permissions to each map (rwx)

● Different cache (read, write, pa, va, …)

Use the `o` command to manage the files.

Understanding IO

● Files are represented by a descriptor
● Maps will put a specific region of an fd in virtual

addressing
● Bin info can be used to inspect sections, etc
● io.va variable allows us to choose between va and pa
● Maps can be overlapped and priorized.
● oL to list all the plugins
● Difference between maddr, baddr, paddr, vaddr, ...

Basic Commands

Seeking

Change current position, accepts flags,

relative offsets, math ops. Use @ for

temporal seeks.

Printing

Show current block (b) bytes,

instructions, metadata, analysis, ...

Writing

Write string, hexpairs, file contents,

instructions, etc..

In The Shell

Syntax of the commands:

> [repeat][command] [args] [@ tmpseek] [; ...] [# comment]

> 3x # perform 3 hexdumps in the same address

> pd 3 @ entry0 # disasm 3 instructions at entrypoint

> x@rsp;pd@rip # show stack and code

>

The Internal Grep

As long as r2 is portable, it doesn’t depends on other
programs, so there are some basic unix commands, as well as
an internal grep/less.

> pd~call

> is~test

> is~?

> ~?? # show help

Interpreting Scripts

The output of any program, command or script (or contents of
a file) can be interpreted as r2 commands. Use the ‘.’.

● . file > interpret file as r2 commands
● .r2cmd* > interpret output of command as r2 commands
● .!bin > run system and interpret output as r2 commands

If the file have an extension it will try to

Run it using #!pipe to make .py, .js, r2pipe

Connection happy.

Flags and Calculations

Flags are used to specify a name for an offset.

Math expressions evaluate those names to retrieve a number.

> ? 1+1

> f foo = 1024 vs f bar @ 1024

> ? foo+123

> ? [123]

> ?v

Flags In Disasm

Flags can be displayed in the disasm as labels to show a
name for an offset.

But those can be also displayed in the instruction
disassembly itself replacing absolute addresses.

> e anal.varsub = true

Flags must contain a dot, to avoid confusion

With register names.

Help

The ? Command is used here for evaluating math expressions,
but it have many more functionalities. See that with ???

● prompt the user ?i
● Show only the value ?v
● Resolve nearest flag+ delta ?d
● Conditional execution ??
● Echo messages ?e
● Benchmark commands ?t
● Clippy! ?E

Configuration

Almost everything in r2 can be configured with ‘e’.

> e asm.

> e asm.arch=?

> e??rop

> e* > settings.r2

> . settings.r2

Printing Bytes

R2 is an block-based hexadecimal editor. Change the block
size with the ‘b’ command.

p8 print hex-pairs

px print hexdump

pxw/pxq dword/qword dump

pxr print references (drr)

pxe emojis

pxa Show dump map

Structures

pf - define function signatures

Can load include files with the t command.

010 templates can be loaded using 010 python script.

Load the bin with r2 -nn to load the struct/headers
definitions of the target bin file.

Use pxa to visualize them in colorized hexdump.

There’s also support for Kaitai

Structures

(DEMO)

● Parse mach0 header
● Use macho.h
● Use r2 -nn

Disassembling
(and printing bytes)

Disassembling decodes
bytes into meaningful
instructions.

rasm2

Disassembling and assembling code can be done with pa/pad or
using the rasm2 command line tool.

$ rasm2 -L

$ rasm2 -a x86 -b 64 nop

$ rasm2 -d 90

(demo)

Disassembling Code

There are different commands to get the instructions at a
specific address.

pd/pD disassemble N bytes/instructions.

pi/pI just print the instructions

pid print address, bytes and instruction

pad disassemble given hexpairs

pa assemble instruction

Disassembling Code

> e asm.emu=true emulates the code with esil

> e asm.emu.str=true show only string refs computed in emu

> agv/agf. render ascii art or graphviz graph

Seek History s- (undo) s+ (redo)

Use u and U keys to go back/forward in the visual seek
history.

Patching Code

The ‘w’ command allows us to write stuff

● Open with r2 -w (by default is readonly except debugger)
● VA/PA translations are transparent
● Sometimes we will need to use r2 -nw to patch headers
● The w command also allows to write assembly
● Wx in hexpairs
● Visual CJMP patching
● wxf

DEMO: patch simple crackme program

Dumping, Restoring and Clipboard

Dump to file

> pr 1K > file

> wtf file 1K

> y 1K

Restoring

> wf file @ dst

> yy @ dst

Copy

> yt 1K @ dst

Decompilation

Better disassembly

First let’s see how we can improve the disassembler output.

> e asm.emu.str=true

> e asm.pseudo=true

> pds

> pdc

Decompilers for radare2

Decompiling is not just showing the disassembly in a better
way. It requires understanding what the code does, emulating
it, removing dead code, and perform several optimizations
and mix it with type information to get a C like output.

● Boomerang Abandoned
● Snowman Supported
● Retdec supported
● Radeco wip (gsoc)
● r2dec Actively maintained

r2dec

Wip and experimental decompiler written in NodeJS + r2pipe.

Developed by @deroad. To install type this:

● r2pm -ci r2dec

Using use it:

● af
● #!pipe r2dec

Decompiler Demo

(DEMO)

● Use r2dec to decompile some functions

r2pm -ci r2dec

User Interface
● WebUI
● Bokken
● Visual Mode
● Visual Panels
● Command line
● R2Pipe
● Colors!

Colors!

> e scr.color=true

> e scr.rgb=true

> e scr.truecolor=true

> e scr.utf8=true

> ecr # Random colors

> eco X # Color palette

> VE # visual color theme editor

Scripting with r2pipe

It is possible to script r2 using almost any programming
language out there. This is possible thanks to r2pipe. A
simple interface to run commands and get the output in a
string which can be processed as json to avoid parsing
issues.

import r2pipe

r2 = r2pipe.open(“/bib/ls”)

print(r2.cmd(“pd”))

r2.quit()

Visual Mode

Type V and then change the view with ‘p’ and ‘P’

Visual Panels

Press ‘!’ in the Visual mode

Web User Interface

Start the webserver with =h

Launch the browser with =H

See /m /p /t and /enyo

R2 have an embedded webserver

No extra deps required.

Looking for contributors!

Cutter

Rebranded Iaito originally written by Hugo Teso

● Multiplatform QT5 gui
○ Windows, macOS, Linux/*BSD/Haiku

● Looking for contributors
● Actively maintained, in sync with r2 releases

Deeper Look into the Visual Mode

Visualization

● Toggle Colors (C)
● Highlight stuff with (/)
● Setting new commands on top and right with = and |
● <space> toggle between graph and disasm

Deeper Look into the Visual Mode

Navigation

● Cursor Mode (Vc)
● Browse
● HUD (V_)
● Resize Hexdump with []
● Add comments (;)
● Undo/Redo seek (u/U)
● Find next/prev hit/func/.. With n/N
● Basic Block Graphs
● Tab to choose panel
● Use = and |
● Highlight words with /
● ? Help for more

Deeper Look into the Visual Mode

Debugging

● Debugger integration
○ Seek to PC (.)
○ Step (s) or StepOver (S)
○ Set breakpoints with ‘b’

● Change stack settings
● Change register values
● Continue until X
● Watchpoints, etc..

Deeper Look into the Visual Mode

Editing stuff

● Bit Editor (Vd1)
● Increment/Decrement bytes (Cursor + +/- keys)
● Select ranges bytes to copy/paste
● Define flags
● Interactive writes

○ A : rewrite assembly in place
○ I : insert hex/ascii stuff

Color Themes

Color themes are r2 scripts that run ec* commands to change
the color palette.

● Portable across windows and *unix
● Supports 16, 256 and truecolor setups
● Supports html output
● Character attributes:

○ Bold, italic, bgcolor, …

● Supports utf8 chars (text width is not constant)

See eco and ec commands for more information

Binary Info
(parsing file formats)

RBin detects file type and
parses the internal
structures to provide
symbolic and other
information.

RBin Information

$ rabin2 -s

> is

> fs symbols;f

Symbols Relocs Classes Entrypoints

Imports Strings Demangling Exports

Sections Libraries SourceLines ExtraInfo

RBin Information

All this info can be exported in JSON by appending a ‘j’.

$ r2 -nn /bin/ls

> e scr.hexflags=9999

> pxa

(DEMO)

Rebasing Symbols

Check binary information to see if its relocatable by
checking the “pic” field in rabin2 -I

Symbols represent public intormation of name=address. This
is exported symbols from the binary or library, the imports
in the plt, the function information of mach0 binaries,
methods in java/dalvik binaries, etc..

Those can be rebased with:

$ rabin2 -B 0x800000 /bin/ls

Imports

The imports are the functions that must be resolved by the
runtime linker from the libraries linked to allow the
program run.

On windows binaries, imports specify the library where the
symbol must be found so its reflected in its name:

$ rabin2 -i

Classes and methods

R2 does name demangling by default. (e bin.demangle=false)

The information of classes and methods can befound in:

● objc metadata
● Class/Dex
● Symbol name with :: separators
● C++ Vtables

Sections

Some of them are mapped and some others don’t. Executables
use to provide the information duplicated. One simplified
for the loader and another for analysis, exposing swarf
information, annotations, etc

> iS

> .iS*

> S=

> S-*

Hashing Sections

Rahash2 allows us to compute a variety of checksums to a
portion of a file, a full file or by blocks.

$ rahash2 -a md5 -s “hello world”

$ rahash2 -a all /bin/ls

$ rabin2 -SK md5 /bin/ls

$ rahash2 -L

● Also supports encryption/decryption
● As well as encoding/decoding

Entropy

The entropy is computed by the amount of different values in
a specific block of data.

● Low entropy = plain/text
● Middle entropy = code
● High entropy = compressed / encrypted

There are other methods to identify

● p=e
● p=p
● p=0
● ...

Visualizing Big Regions

There are many ways to represent the contents of a buffer in
r2. This is, by computing a value that represents each
block.

But also, we have analysis maps (each instruction type is
rendered with a different color).

These “zoomed” view mode is useful when trying to find a
region of interest, that may contain text, nulls, etc..

Strings

Strings can be stored in different places inside the binaries:

● In .rodata section

● Inside the .text (code)

● In headers (interpreter, libraries, symbol names, ..)

Also, we can find strings in a variety of file types:

● Raw memory dump

● Hard disk image

● Known file format

● Debugged process

● Emulated code to find references or construct strings

● Encoded (base64, utf16, …)

● Encrypted

Strings

So we have different commands depending on that:

$ rabin2 -z # strings from .rodata (default in r2)

$ rabin2 -zz # strings in full file

$ rabin2 -zzz # dont map once, useful for huge files like 1TB

Radare2 will load the strings by default, which is sometimes not

desired, see the following vars:

> e bin.strings=false

> e bin.maxstrbuf=32M

Scripting
(automation)

Automating actions in r2
using your favourite
programming language (or
not).

Scripting

● Shellscript (batch mode)

○ Use ‘jq’ to parse json output

○ Send commands via stdin

● Bindings (full api)

○ Also supports Python, Java, ...

● Plugins

○ Loaded from home and system directories

● R2Pipe scripts

○ spawn/pipe/http/…
○ C / C++QT / C#/.NET / Erlang / Haskell / Lisp / NodeJS /

Python / Perl / Ruby / Rust / Go / Swift / Java / Nim /

Perl / Vala...

○ Interpreted with ‘.’ command

Using R2Pipe For Automation

R2 provides a very basic interface to use it based on the cmd()

api call which accepts a string with the command and returns the

output string.

$ pip install r2pipe

$ r2 -qi names.py /bin/ls

$ cat names.py

Other uses of r2pipe

R2pipe provides also the ability to expose an API to implement

plugins in alternative languages. Right now only for Python and

NodeJS. But it can be easily ported to other languages.

● Syscall implementations for ESIL

● IO plugins via r2 r2pipe://”node …”

● Asm plugins via r2 -i asmArch.js

● Bin plugins can be aksi dine via r2pipe

Running r2pipe scripts with the . command

R2pipe Performance

If you are worried about using r2pipe instead of the native API.

It must also care about other aspects like maintainability,

portability, stability, etc

● Pipe + JSON parsing is faster than FFI

● Textual representation, easy to debug

● Native language objects and idiomatic access to fields

● There are many different r2pipe backends

○ http is slow

○ rap a bit faster

○ spawn and doing pipes

○ native (dlopen+dlsym(r_core_cmd_str))

R2pipe On BigData

Using async programming with r2pipe allows us to split the user

interface to the logic of the program which results in more

responsiveness.

R2 can not execute more than one command at a time so if a long

process is happening it will queue the rest.

For this cases we must consider splitting the process into smaller

operations to avoid huge replies that may fail depending on

transport and long operations that will make r2 eat all cpu.

Analyzing Code
(and graphing)

Analyzing code unveils the
real code structures that
is defined by the
instruction listings and
find references, function
boundaries, local
variables, identify types,
etc..

Analyzing From The Metal

R2 provides tools for analyzing code at different levels.

ae emulates the instruction (microinstructions)

ao provides information about the current opcode

afb enumerate basic blocks of function

af analyzes the function (or a2f)

ax code/data references/calls

Analyzing the Whole Thing

Many people is used to the IDA way: load the bin, expect all
xrefs, functions and strings to magically appear in there.

This is the default behaviour, which can be slow, tedious,
and 99% of the time we can solve the problem quicker with
direct and manual analysis.

Run `r2 -A` or use the ‘aa’ subcommands to achieve this.

● aa
● aaa
● aaaa
● aaaaa # :D

Analyzing the Whole Thing

● The proper way to analyze programs is not to rely on the
default analysis loops under aaa, but rather understand
what each command does and which one fits better to solve
the problems you are facing.

● Not all xrefs are usually required, so finding only the
ones you are interested in is interesting to save some
time.

● anal.from/to can be used to restrict boundaries.
● aab and aac are pretty useful to find all functions and

call refs.

Low Level Anal Tweaks

Use the anal hints command to modify instruction behaviours
by hand.

> ahs 1 @ 0x100001175

(DEMO) Jump in the middle of instruction

> e asm.middle

Searching for code

We can search for some specific code in a binary or memory.

● /R [expr] search for ROP gadgets
● /r sym.imp.printf find references to this address
● /m search for magic headers
● Yara identify crypto algorithms
● /a [asm] assemble code and search bytes
● /A [type] find instructions of this type
● /c [code] find strstr matching instructions
● /v4 1234 search for this number in memory
● pxa disasm all possible instructions
● e asm.emustr=true pD $SS @ $S~Hello

Graphing Code

Functions can be rendered as an
ascii-art graph using the ‘ag’.

Enter visual mode using the V key

Then press V again (or spacebar)
to get the graph view.

Graphing Code

The graph view is the result of the agf command and it
permits to:

● Move nodes
● Zoom in/out
● Relayout
● Switch between different graph modes

○ Callgraph
○ Refs graph
○ Control Flow Graph (basic blocks)
○ Change contents of nodes (pds, pd, ..)

Graphing Code

R2 can also use graphviz, xdot or web graph to show this
graph to the user, not just in ascii art.

> agv

> ag $$ > a.dot

Show how to export function and basic block information.

Doing Your Custom Graphs

You can create your own graphs, or write code that spits
agn/age commands to render an ascii-art graph.

● See agn/age commands

(DEMO)

Signatures
(and graphing)

Signatures is the "art" of
identifying functions by
looking at byte patterns.

Preludes

There are many ways to identify functions inside a binary,
one of them is using signatures to find the beginning of
them. The aap command will run different search patterns
depending on arch/bits/os:

● aap - function preludes

It is also possible to perform searchs with /x and run a
command on each offset:

We can also use strings as signatures and use /

> /x 898989

> pd 5 @@ hit*

Signatures

The signatures define a more fine-grained view of the
function. Which excludes the parts of the instruction that
can vary depending on compilation time. This is similar to
how IDA FLIRT signatures work, and in fact we also support
them via the zF command

$ r2 -A static-bin

> zg lebin > lebin.r2

> zo lebin.r2

> z/ $$

Modern Signatures

Radiff2 allows to find differences in code by trying to find
two functions that match and compares them internally.

Zignatures can be defined to follow some specific metrics
extracted from the code analysis information.

● Afi
● Calling convention
● Number of arguments
● Number of local variables
● Number of exit points
● Cyclomatic Complexity
● ...

References

The code and data is referenced by ref and xref structs,
using the axt command we can inspect them.

Finding references to strings is an important task and r2
have different commands that may help on the analysis.

> aav

> aae

> /r

> pD $SS @ $S~Hello

How Do References Look Like?

References can be on many types:

● Read / Write / Exec
● CALL, JMP, LEA
● Code, Data (Type Of Data)

Some references are implicit in one instruction.

Others are computed by a sequence of instructions.

Some reuse register values, and recursive emulation

Also, hardcoded relative or absolute addresses..

Finding References

References can be on many types:

● Read / Write / Exec
● CALL, JMP, LEA
● Code, Data (Type Of Data)

BinDiffing
(and graphing)

Finding differences
between two binaries
looking for bugfixes.

Checking differences

Being able to identify what is different from two files is
important, there are many ways to do that:

● At byte level
● With delta diffing
● Permit some % of aproximation
● At code level (function, basic block, ..)

Lets try that:

● radiff2 -x fileA fileB
● two column hexdump in r2 (cc $$ @ $$+1)
● DEMO: radiff2 with all the modes
● Creating a patch with -r

Finding the Change

DEMO: Identify what is different between two executables

Create a patch, analyze the changes...

● radiff2 -r fileA fileB

Applying the patch:

● r2 -qwni patch.r2 orig

Debugging
(and emulation)

R2 supports native
debugger for Linux, BSD,
XNU and Windows.

But there’s more!

What Is Debugging?

R2 is a low level debugger (not a source debugger).

It provides much more low level information than source
debuggers use to provide. Doesn’t competes with GDB/LLDB.

Basic Actions for a debugger are:

ds step db breakpoint dr show regs

dso step over dcu continue-until dx code-inject

dc continue dm memory-maps dd file-desc

...

The state of the process

The process state is represented by this information:

● Memory (maps, dm)
● Registers
● Threads (shared memory, unique regs)
● File Descriptors

This state can be saved and restored with the dmp command.

IO != Debug

R2 have different plugins to interact with external
resources like processes.

● IO plugins abstract the access to reading memory
● RDebug shares a link with IO to set breakpoints, memory,.

We can open a process or debug it:

$ r2 -d vs r2 dbg://

We can also debug ourselves:

$ rarun2 r2preload=true program=/bin/cat

$ r2 self://

Registers

Retrieved with the dr command

● Store last two states to colorize diffs
● Imported into r2 as flags .dr*
● Special register names for generic ones PC, SP, …
● Change its value with dr regname=value
● Debug registers are accessed with the drx command
● Register profiles define how are they stored

Memory

The memory in the process is organized in maps. Those are
virtual regions of memory that can be a map of a file or
just allocation for the heap.

Each page have its permissions and sometimes an associated
name that allows us to identify which library is in there.

We can change those permissions to force page fault
exceptions and emulate

> pxr @ rsp

> dm

> dms (memory snapshots)

ASLR and Rarun2

Rarun2 is a tool that allows us to spawn a process with a
specific environment and configuration. It is ideal to
construct reproducible runs without much hassle.

ASLR is the ability of the linker to map the binaries on
different virtual addresses on each run. Some systems allow
to disable this feature and rarun2 can do that.

$ rarun2 aslr=no program=./test

$ r2 -e dbg.profile=test.rarun2 -d test

Stack and Heap

Stack is where the function frame is stored, we can check
local variables values in there.

● Return address stored in the stack
● Reconstruct backtrace with dbt command
● e dbg.btalgo=?
● pxr @ rsp

Heap is dynamically allocated by request of the program and
is structured and not lineal like code or stack is.

● dmh command (only available on Linux for now)
● There are several implementations, a single process can

have more than one heap, even per-thread.

Threads

A process can raise different signals:

● New thread created (clone)
● New process spawned (fork)
● New library loaded (windows)
● Syscall executed (dcs)
● Signal received (dck / dk / dko)
● Is dead (di)

File Descriptors

The kernel will expose the file descriptors opened by the
process. R2 allows to enumerate and do different things by
injecting code in the target process.

● open a new file
● Dup2 to replace one file descriptor
● Close a file

This code injection functionality can be useful for other
places and its exposed in dx command.

Injecting code

This code injection functionality can be useful for other
places and its exposed in dx command.

Inject code to spawn a shell generated by ragg2

$ ragg2-cc -a x86 -b 64 -k darwin -x h.c

$ r2 -d ls

> dx e900000000488d3516000000bf01000000b80400000248c7c206..

$ ragg2 -B cc -x

Remote Debugging

R2 supports WINDBG, GDB and native remote protocols. But, as
long as r2 runs everywhere it is recommended to use it in
place.

For example:

$ lldbserver /bin/ls

$ r2 -d gdb://localhost:7363/

ESIL

ESIL stands for Evaluable Strings Intermediate Language.

A forth-like language (stack based language) using comma as
a tokenizer and used for emulating and analyzing code.

Widely used for decrypting malware routines and analyzing
shellcodes and other payloads.

 mov eax, 33 => 33,eax,=

ESIL

The anal plugins provide an esil expression for every
instruction that represents what it is doing internally.

This way it is possible to emulate an instruction and get
some metrics out of it:

● Which registers are read, or write
● Which memory is accessed
● It is modifying the stack?
● Branch prediction
● ...

ESIL

Esil can be also used to construct search keyword or rules.

And even used with the debugger for assisted and prediction
of conditional branches.

Also helpful for software watchpoints emulated with steps +
esil emulation to stop before executing the offending
instruction.

(DEMO)

ESIL: Demo

Solve a crackme by emulating a function that decrypts a
password in memory.

r2frida
Frida + Radare2

FRIDA is an in-process
dynamic tracer scriptable
with Javascript.

R2FRIDA allows to talk to
a frida-server or any
process to read/write
memory and inject code at
runtime.

R2Frida: Installation

Developed by oleavr, mrmacete and pancake (me) at NowSecure.

Provides a handy repl (r2 shell) to use Frida without having
to write code snippets. Because it implements the most
common actions as r2 commands accessible via the io.cmd
interface.

IO plugins can open/read/write/close but also cmd(), this
allows the user to talk directly to the io plugin by using
the \ or =! Prefix.

$ r2pm -ci r2frida

R2frida: DEMO

Twitter 280 chars :D

Questions?

\o.

EOF

