
fixing bugs
in binaries

using r2

@noconname
pancake

pancake@nopcode.org

The problem

Star ting from the fact that there’s no perfect or

secure software. Different approaches are taken to

workaround those security vulnerabilities .

- vir tual machines

- sandboxes and virtualization

- prevention (libsafe, valgr ind, ..)

- system level preventions (ASLR, PAX, SELinux, ..)

- software updates or source patches

On privative software, the situation is even wor st,

because many times the patches or updates

appear s late.

The solution

When we have no access to the source; the only

way to fix that flaw is by patching the binary in order

to fix or wor karound the vulnerability.

Some community patches that have appeared

before the official ones:

- iOS PDF (CVE 2010-1797)

- W32 LNK (CVE 2010-2568)

- W32 SMB (CVE 2009-3103)

...

The tools

We are going to use radare2 in order to analyze

binar ies and create patches.

The website of the project is:

http://www.radare.org

To get it from mercur ial:

$ hg clone http://radare.org/hg/radare2
$ cd radare2
$./configure --prefix=/usr
$ make
$ sudo make symstall

Introduction

When a 0day vulnerability is disclosed, attackers

focus on them in order to exploit it and lately many

of them have been found in some trojans , worms or

jailbreaks .

The techniques explained in this presentation have

been useful in the following situations:

- capture the flag (protecting server)

- secure your phone (against pdf exploits)

- protect the desktop (windows box + dll hijack)

Patches

There are several ways to patch a vulnerability of a

program or librar y.

- patch the binary (program or librar y)

- in-memor y patch (attaching with debugger)

- preload librar y to overr ide problematic symbols

- trigger s (hooking events to patch on runtime)

We must have in mind that our patches must not cor-

rupt stack or register state in order to make the pro-

gram happy.

Patches: r2 commands

Here there are some commands useful to modify the

code in memory or disk, assembling opcodes, inser t-

ing files and so on:

[0x00000000]> /x 383d3d3d3d4 # find watermark
[0x00034000]> f code @ ‘du -b code.bin | cut -f 1‘
[0x00034000]> !rasm2 pusha
60
[0x00034000]> wa pusha
[0x00034001]> s+1
[0x00034001]> wf code.bin @ $$+1
[0x00034001]> wa popa @ $$+1+code

Patches: in place

Patching the binary is proba bly the more clean solu-

tion, while not requir ing extra dependencies to run.

push ebp push ebp
mov esp, ebp push esp, ebp
sub esp, 40 -> sub esp, 31337

If the patch code is bigger than the original we will

need to find a place to put our code and branch the

fir st bytes of the function into our wrapper.

... -> push 32
push [ebp+4] push [ebp+4]
push [esp-4] push [esp-4]
call strcpy -> call strncpy

Patches: in place (2)

Finding a nest for our binary toy is impor tant when

the patched code is larger than the original.

- Rewrite function (optimize code by space)

- Relocate function somewhere else

- Overwr ite unused symbols

- Abuse function paddings

Patches: preloading

Identify the librar y symbol to patch

- Check code references (xrefs) to given symbol

- Wra p the function with protection checks

- Check caller address or parameter s

- Run original function

Only wor ks for dynamically linked binaries

- Alter natives for W32, OSX, BSD/GNU

$ hg clone http://hg.youterm.com/toys/
$ cd toys/libwipe ; make
$ LD_PRELOAD=$PWD/libwipe.so thunderbird

Patches: in memory

Patching the process memory when the program is

running becomes another way to fix vulnerabilities .

Must be applied in every execution.

- Using a debugger

- Exploiting the vulnerability

- Using trigger s (plugins , ..)

$ echo wx 909090 | r2 -w -d ‘pidof chromium‘

Patches: triggers

Runtime patches can be triggered in many ways:

- function call

- exploiting, patch, restore stack

- impor t hooking (preloading)

- reusing symbols

- plugins (if application have them)

Trigger example: redsn0w

One of the several exploits to unlock iOS-based

devices use this technique to patch the bootloader

code in runtime.

In DFU mode, the device loads an old bootloader

which permits memory writing, then patches the sig-

nature check.

arm7_stop # stop 2nd CPU
mw 0x9000000 0xe59f3014 # \
mw 0x9000004 0xe3a02a02 # |
mw 0x9000008 0xe1c320b0 # |- write shellcode at
mw 0x900000c 0xe3e02000 # | address 0x900000
mw 0x9000010 0xe2833c9d # |
mw 0x9000014 0xe58326c0 # |
mw 0x9000018 0xeafffffe # |
mw 0x900001c 0x2200f300 # /
arm7_go # enable arm7, execute code
!sleep 1 # wait a bit
arm7_stop # stop arm7 cpu

Trigger example: redsn0w

Disassembly of the payload with rasm2:

$ rasm2 -o 0x9000000 -e -a arm -d e59f3014e3a02a \
02e1c320b0e3e02000e2833c9de58326c0eafffffe2200f300

ldr r3, [pc, #20] ; 0x0900001c
mov r2, #8192 ; 0x2000
strh r2, [r3]
mvn r2, #0 ; 0x0
add r3, r3, #40192 ; 0x9d00
str r2, [r3, #1728]
b 0x09000018 ; jmp $$

Exploits the fact that the bootloader can write in

memor y and control the 2nd CPU which shares the RAM.

Using rarc2 to create patches

C-like language compiler that is included in r2 >= 0.6

It generates relocata ble assembly code for

intel/at&t x86-32/64 and ARM (thumb/normal)

$ rarc2 -aarm # generate arm assembly
$ rarc2 -s -ax64 # GAS-compatible x86-64 assembly

$ cat hi.r
printf@alias(0x8048400);
main@global(,32) {

printf("Hello World\n");
}

$ rarc2 hi.r > hi.rasm

$ rasm2 -a x86.olly -f hi.rasm
558bec81ec40000000c785ecffffff48656c6cc785f0ffffff6f20576f
c785f4ffffff726c640ac785f8ffffff000000008d85ecffffff8985fc
ffffffffb5fcffffffe8b8c37bf881c40400000081c4400000005dc3

Meld up everything with rapatch

ra patch is a program that uses libr api in order to

ease the process of maintaining patches for binaries .

Integrates many key features of r2 in 90 LOC:

- rarc2: high-level language for patching

- r_asm: assembler for many architectures

- r_io: open local files, processes , gdb remote, ..

- r_bin: load ELF/PE/MACH0/CLASS infor mation

- r_util: hexpairs or str ing to be written

- r_core: run plain radare commands

hg clone http://radare.org/hg/radare2-extras

rapatch example

This is a hello wor ld example using rapatch in order

to transfor m /bin/ls into our code, with import/expor t

reuse.

$ cat patch.txt
entry0 {

printf@alias(${imp.printf});

main@global(128,128) {
printf("%d0, 33);
printf("12345678900);
printf("hello world0);
: mov eax,1
: int 0x80

}
}
$ cp /bin/ls ls
$ rapatch ls patch.txt
$./ls
33
1234567890
hello world

Example

Let’s patch a simple buggy program

static int length(const char *str) {
char tmp[32];
strcpy (tmp, str);
return strlen (tmp);

}

int main(int argc, char **argv) {
return length ((argc>1)?argv[1]:"");

}

If the given string is bigger than the local buffer

the stack will be corrupted and the attacker may

execute code.

$ rapatch bin patch.txt
$ rapatch attach://3842 patch.txt

Example: Solutions

We can wor karound or fix the issue.. depending on

the time or requirements we have to give a solution

to the issue:

* change stackframe of function length
- overflow will be still there, but will make the

program safe for a standard attack like wor ms or

kiddies do.

* use strncpy
- more complicated patch (code will not fit)

- a perfect target for rarc2 and rapatch

Solution: Resize stack frame

Changing the stack frame size is a simple and effec-

tive solution to change the way the exploit must

work.

$ r2 -w a.out
[0x8048312]> s sym.readbuf+3
[0x8048312]> pd 3
0x8048312 55 push %ebp
0x8048313 89e5 mov %esp, %ebp
0x8048315 83ec18 sub $0x18, %esp
[0x8048312]> s+3
[0x8048315]> wa sub esp, 0x1024

Solution: Using strncpy

The function we have to call in order to make the

code secure requires one argument more to define

the boundaries of the target buffer.

If we have not enought space to push another argu-

ment to the stack have to wra p the execution flow.

Let’s see the what we need..

Solution: A nest for our eggs

Where should we put our eggs?

- function paddings

- unused symbols (like init, fini)

- plugins (shared memory)

- injected librar ies (LD_PRELOAD)

- mma ped bins on disk

- FMI: read phrack 64

Solution: Hook call

Hooking calls is proba bly the easiest way to redirect

code by patching binaries . Calls or branch+link

instr uctions are constr ucted by [opcode][delta]. The

delta address can be modified in order to branch to

our code with 3 byte delta addressing.

A branch to an import can be wrapped patching

the call opcode and then branching back to the

caller address .

Calls store the retur n address in stack (x86) or in a

register on (arm), so we can easily restore the wor k-

flow.

Solution: 2 byte patch (eb)

Another way to get a place for our eggs is by inject-

ing short jumps (2 bytes) in the function prelude. They

can branch to near addresses (+/- 129 bytes).

We can replace a 2 byte instructions (mov esp, ebp)

in order to redirect to a bigger place where we put

our egg.

mov esp, ebp -> jmp short ...

$ r2 -w malloc://200000
[0x00001000]> e asm.profile=simple
[0x00001000]> wx eb00 && pd 1
0x00001000 jmp 0x1002 [1]
[0x00001000]> wx eb7f && pd 1
0x00001000 jmp 0x1081 [1]
[0x00001000]> wx eb80 && pd 1
0x00001000 jmp 0xf82 [1]
[0x00001000]> wx ebff && pd 1
0x00001000 jmp 0x1001 [1]

Example2: format string

A simple for mat string vulnerable program:

int main(int argc, char **argv) {
printf (argv[1]);

}

The way patched code should decompile as:

printf ("%s", argv[1]);

Solution: format string

Hooking the call with our printf trampoline

$ cat fmtstr.rasm
.equ printf, 0x8048400
enter
lea eax, dummy
mov [esp+4], eax
lea esp, dummy
call printf
leave
ret

dummy:
.string "%s"
$ rasm2 -f fmtstr.rasm

Example4: boundaries

A famous tramoline boundary vuln in the SMB imple-

mentation in Win7, Vista, 2008 (CVE-2009-3103)

The protocol ver sion word (16bits) is used as an index

to a pointer table without any check.

This issue was repor ted as a DoS by Laurent Gaffie

http://g-laurent.blogspot.com/2009/09/windows-

vista7-smb20-negotiate-protocol.html

Later Ruben Santamartapublished that it was

exploita ble

http://blog.48bits.com/2009/09/08/acerca-del-bsod-

de-srv2sys

Example4: boundaries

This is the vulnerable code of the CVE-2009-3103:

movzx eax, word ptr [esi+0xc]
mov eax, ValidateRoutines[eax*4]
test eax, eax
jnz bb_156c9
mov eax, 0xc0000002
jmp bb_156cc

bb_156c9:
push ebx
call eax

bb_156cc:
...
ret

Solution: boundaries

Some languages (like Vala) support {pre,post}condi-

tions .

This is quite close to pseudocode, but allows to

define in an elegant way the restr ictions for a func-

tion to run.

We can wrap the function call by a precondition

trampoline which checks and passes the filtered

arguments to the destination function.

test eax, eax # bottom limit (<0)
js ${sym.food}
cmp eax, 128 # top limit
ja ${sym.food}

Example5: null pointers

Not usually exploitable, but annoying if the program

you use crashes because of this.

Fixing it results in missing functionality because of the

bug in the target program.

cmp $0, 8(%esp)
jz leaveret

test eax, eax
jz leaveret

Some real examples

We are going to analyze the w32 LNK vulnerability

and the iOS PDF bug in order to see how they wor k

and find a fix.

W32 LNK bug (CVE 2010-2568)

Exploited by stuxnet. But it was in fact a pretty old

bug.. which is respawned every few year s :)

The key of this vulnerabilty consists in executing code

placed in the constructor of a DLL librar y which has

been specified as an icon of an LNK shortcut file.

The LoadLibrar yW of the DLL is triggered by an abso-

lute path in the icon of the crafted LNK file.

http://www.ivanlef0u.tuxfamily.org/?p=411

W32 LNK bug (CVE 2010-2568)

The metasploit exploit serves the LNK and the DLL as

a randomized file via WebDAV which is displayed as

a shared director y ser vice by Windows which can be

browsed.

$ cat exploit.sh
#!/bin/sh
cd /home/pancake/prg/metasploit
sudo ./msfcli P << EOF
use windows/browser/ms10_046_shortcut_icon_dllloader
set SRVHOST 0.0.0.0
set SRVPORT 80
set PAYLOAD windows/exec
set CMD calc
set LHOST 0.0.0.0
set LPORT 8081
exploit
EOF

Open "My PC" on Windows . Go for a shared service and w

LoadLibrar yW to be executed by explorer.exe

W32 LNK bug (CVE 2010-2568)

To see how the exploit wor ks we can wget the .lnk

and .dll files, attach the debugger to the explorer

process and wait for LoadLibrar yW to go

$ r2 -d ‘tasklist | grep explorer.exe | awk ’{print $1}‘
[0x004030d8]> .!rabin2 -rs c:\windows\system32\kernel32.dll
[0x004030d8]> db sym.LoadLibraryW
[0x004030d8]> dc
[0x004030d8]> s eip
[0x7ca78712]>
[0x7ca78712]> pm ds @ esp
0x00f5e9c4 0x0400020
0x00f5e9c8 "Z:\129dd92fg1.dll"
[0x7ca78712]> "wa mov eax,0;ret"
[0x7ca78712]> db-sym.LoadLibraryW
[0x7ca78712]> wc
...

iOS PDF bug (CVE 2010-1797)

The site jailbreakme.com exploited it together with

an iOS ker nel bug which permits priviledge scalation.

The vulnerability is in the freetype librar y (CFF)

- freetype is GPL, so we can get the fix from the git

repo

git clone http://git.savannah.gnu.org/cgit/freetype/freetype2.git
git diff 236fc8e15a9459d05656013727a1717dbfa425c2

in symbol _cff_decoder_parse_charstrings
+ if (decoder->top - stack >= CFF_MAX_OPERANDS)
+ goto Stack_Overflow;

iOS PDF bug (CVE 2010-1797)

System librar ies and Frameworks in iPhoneOS>3.0 are

stored inside the dyld cache.

Each ipsw from Apple comes with new dyld cache

(˜95MB) and each librar y/binar y is built with random-

ized symbol order.

This makes plain bindiffing impossible at byte level.

We can use radiff2 -g to analyze symbols and find dif-

ferences between the two given binaries .

System wraps all dyld_ calls in order to open files from

cache instead of the filesystem, so mach0 loader,

gdb and other can still wor k, but librar ies are not in

the filesystem.

iOS PDF bug (CVE 2010-1797)

I used to extract the caches of two different iPad

devices running 3.2 and 3.2.1 respectively:

$ rabin2 -A ../dyld_shared_cache_armv7
000 /System/Library/PrivateFrameworks/StoreServices.

framework/StoreServices arm_32 (Unknown arm subtype)
001 /System/Library/Frameworks/CFNetwork.framework/

CFNetwork arm_32 (Unknown arm subtype)
002 /usr/lib/libarchive.2.dylib arm_32 (Unknown arm ..
...

$ rabin2 -x dyld_shared_cache_armv7 libCGFreetype.A.dylib

iOS PDF bug (CVE 2010-1797)

Checking for the symbols of each librar y we get the

same number of functions

$ rabin2 -s libCGFreetype.A.dylib.3.2 > /dev/null
864 symbols
$ rabin2 -s libCGFreetype.A.dylib.3.2.1 > /dev/null
864 symbols

Symbol order in libCGFreetype looks not randomized.

But you may find this in other libs like UIKit.

$ rabin2 -s UIKit-3.2 |head | awk -F = ’{print $2" "$9}’
0x31602170 offset _CGAffineTransformFromString
0x315e6adc offset _CGPointFromString
0x3160234c offset _CGRectFromString
...
$ rabin2 -s UIKit-3.2.1 |head | awk -F = ’{print $2" "$9}’
0x3022e0d8 offset _CGAffineTransformFromString
0x30212a44 offset _CGPointFromString
0x3022e2b4 offset _CGRectFromString
...

NOTE: Most librar ies in iOS are in ARM thumb (2byte opcodes

iOS PDF bug (CVE 2010-1797)

As seen in the git, the vulnerability is found in the

_cff_decoder_par se_char str ings symbol which incor-

recly check the boundaries of the arguments in the

VM of the fonts .

Cydia published a PRELOAD patch based on the

MobileSubstrate framework which consists on a sys-

tem-wide librar y preloading that offers many ways to

extend or manipulate the iOS interface and function-

ality. (sms helper, etc..)

The patch from cydia is not opensource, but analyz-

ing it with r2 is as simple as expected.

iOS PDF bug (CVE 2010-1797)

Let’s unpack the debian package from cydia..

$ apt-get install com.saurik.iphone.cve-2010-1797_11.0.3245
$ cd /var/cache/apt/archives
$ ar x com.saurik.iphone.cve-2010-1797_1.0.3245-1_iphoneos-arm.deb
$ tar xzvf data.tar.gz
./Library
./Library/MobileSubstrate
./Library/MobileSubstrate/DynamicLibraries
./Library/Mobile.../.../PDFPatch_CVE-2010-1797.dylib
./Library/Mobile.../.../PDFPatch_CVE-2010-1797.plist

The dylib is the mobilesubstrate plugin that fixes the bug.

iOS PDF bug (CVE 2010-1797)

The PDFPatch_CVE-2010-1797.dylib librar y is the

mobilesubstrate plugin that patches the freetype

librar y in memory to fix the bug

$ cd Library/MobileSubstrate/DynamicLibraries/
$ r2 *.dylib
[0x00000dfc]> s sym.__ZL13_MSInitializev
[0x00000f08]> pd

0x00000f08 push {r7, lr}
0x00000f0c ldr r0, [pc, #12]
0x00000f10 add r7, sp, #0
0x00000f14 add r0, pc, r0
0x00000f18 bl imp.__dyld_register_func_for_add_image
0x00000f1c pop {r7, pc}

[0x00000dfc]> s imp.__dyld_register_func_for_add_image
...

Questions?

Ideas , questions?

jan seme li wile sona? o toki!

wile e toki suli ni li pona tawa jan :)

Thanks for listening!

