fixing bugs
N binaries
using rz

@noconname

pancake
pancake@no

The problem

Starting from the fact that there’s no perfect or
secure soffware. Different approaches are taken to
workaround those security vulnerabillities.

- virfual machines

- sandboxes and virtualization

- prevention (libsafe, valgrind, ..)

- system level preventions (ASLR, PAX, SELinux, ..)
- software updates or source patches

On privative software, the situation is even worst,
because many fimes the patches or updates
appears late.

The solution

When we have no access 1o the source; tThe only
way to fix that flaw is by patching the binary in order
fo fix or workaround the vulnerabillity.

Some community patches that have appeared
pefore the official ones:

- 108 PDF (CVE 2010-1797)
- W32 LNK (CVE 2010-2568)
- W32 SMB (CVE 2009-3103)

The tools

We are going to use radare?2 in order to analyze
pinaries and create patches.

The welbsite of the project is:
http://ww.radare.org

To get it from mercurial:

$ hg clone http://radare.org/ hg/radare2
$ cd radare2 _

$./configure --prefix=/usr

$ make

$ sudo nake synstal |l

Introduction

When a 0day vulnerability is disclosed, attackers
focus on them in order To exploit it and lately many
of them have been found in some frojans, worms or
jailbreaks.

The technigues explained in this presenfation have
been useful in the following situations:

- capture the flag (protecting server)
- secure your phone (against pdf exploits)
- protect the desktop (windows box + dll hijack)

There are several ways to pafch a vulnerabillity of @
program or library.

- patch the binary (program or library)

- In-memory patch (attaching with debugger)

- preload library to override problematic symbols
- triggers (hooking events to patch on runtime)

We must have in mind that our patches must not cor-
rupt stack or register state in order to make the pro-

gram happy.

Patches: r2 commands

Here there are some commands useful to modify the
code in memory or disk, assembling opcodes, insert-
iIng files and so on:

0x00000000] > /x 383d3d3d3d4 # find watermark
0x00034000] > f code @‘du -b code.bin | cut -f 1
8x00034000_> lrasn®? pusha

 0x00034000] > wa pusha

| 0x00034001] > s+1 _

| 0x00034001] > wf code. bin @ $$+1

| 0x00034001] > wa popa @ $$+1+code

Patches: in place

Patching the binary is probably the more clean solu-
tion, while not requiring extra dependencies to run.

push ebp push ebp
nov esp, ebp push esp, ebp
sub esp, 40 - > sub esp, 31337

If the patch code is bigger than the original we will
need to find a place to put our code and branch the
first bytes of the function intfo our wrapper.

-> push 32
push [ebp+4 push [ebp+4
push [esp-4 push [esp-4
call strcpy -> call strncpy

Patches: in place (2)

FiInding a nest for our binary toy Is important when
the patched code is larger than the original.

- Rewrite function (optimize code by space)
- Relocate function somewhere else

- Overwrite unused symbols

- Abuse function paddings

Patches: preloading

ldentify the library symbol to pafch
- Check code references (xrefs) to given symbol
- Wrap the function with protection checks
- Check caller address or parameters
- Run original function

Only works for dynamically linked binaries
- Alternatives for W32, OSX, BSD/GNU

hg clone http //hg youterm com t oys/
toys/ |1 bVVI , hake
LD PRELOAD=$PW/ | i bwi pe. so t hunder bird

Patches: in memory

Patching the process memory when the program is
running becomes another way to fix vulnerabillities.

Must be applied in every execution,
- Using a debugger
- Exploiting the vulnerability
- Using triggers (plugins, ..)

$ echo wx 909090 | r2 -w -d ‘pidof chrom um

Patches: triggers

Runtime patches can be friggered in many ways:

- function call

- exploiting, patch, restore stack

- Import hooking (preloading)

- reusing symbols

- plugins (if application have them)

Trigger example: redsnOw

One of the several exploits o unlock iIOS-based
devices use this fechnigue to patch the bootloader
code in runtime.

In DFU mode, the device loads an old bootloader
which permits memory writing, then patches the sig-
nature check.

arnv_st op # stop 2nd CPU

mv 0x9000000 Oxe59f 3014 # 0\

mv 0x9000004 Oxe3a02a02 #

mv 0x9000008 0Oxelc320b0 # - wite shell code at
mv 0x900000c 0xe3e02000 # address 0x900000
mv 0x9000010 0xe2833c9d #

mv 0x9000014 0xe58326¢c0 #

mv 0x9000018 Oxeafffffe #

mv 0x900001c 0x2200f 300 #

arm/_go # enabl e arnv, execute code
lsleep 1 # walt a bit

arm/_stop # stop arm/ cpu

Trigger example: redsnOw

Disassembly of the payload with rasm?2:

$ rasn2 -o 0x9000000 -e -a arm -d eb59f 3014e3a02a \
02e1c320b0e3e02000e2833c9de58326¢c0eaf ffffe2200f 300

| dr r3, [pc, #20] ; 0x0900001c

nov r2, #8192 - 0x2000

strh r2, %rB]

m/n r2, #0 : 0xO0

add r3, r3, #40192 - 0x9d00

str r2, [r3, #1728] _

b 0x09000018 jmp $%

Exploits the fact that the bootloader can write In
memory and confrol the 2nd CPU which shares the RAM.

Using rarc2 to create patches

C-like language compiler that is included in r2 >= 0.6

It generates relocatable assembly code for
intel/at&t x86-32/64 and ARM (thumlb/normal)

$ rarc2 -aarm # generate arm assenbly
$ rarc2 -s -ax64 # GAS-conpati bl e x86-64 assenbly

$ cat hi.r
printf@lias(0x8048400);

mei n@l obal (, 32) {

\ printf("Hello World\n");

$ rarc2 hi.r > hi.rasm

$ rasn2 -a x86.0lly -f hi.rasm
558bec81ec40000000c785ecffffff48656c6cc785f0ffffffof20576f
c/785f4ffffff726c640ac785f8ffffff000000008d85ecffffff8985fc
ffffffffbSfcffffffe8b8c37bf881c40400000081¢c4400000005dc3

Meld up everything with rapatch

rapatch is a program that uses libr api in order to
ease the process of maintaining patches for binaries.

Integrates many key features of r2 in 90 LOC.:

- rarc2: high-level language for patching

- r_asm: assembler for many architectures

- r_lo: open local files, processes, gdb remote, ..
- r_bin: load ELF/PE/MACHO/CLASS information
- r_util: hexpairs or string to e written

- r_core: run plain radare commands

hg clone http://radare.org/ hg/radare2-extras

rapatch example

This is a hello world example using rapatch in order

tfo fransform /bin/ls into our code, with import/export
reuse.

$ cat patch.txt
entry0 {

printf@lias(${inmp.printf});
mal n@l obal (128, 128) 33

printf("%O0,
printf 12345678900)
printf("hello worl dO)
. nov eax, 1
int 0x80
\ }
$cp/bin/fls Is
$r aPa ch |I's patch. txt
$./Ils
33
1234567890

hell o worl d

Let’s patch a simple buggy program

static int |length(const char *str) {
char tonBZ];
strcpy (tnp, str);
return strlen (tnp);

}

Int main(int argc, char **argv) {
\ return length ((argc>1)?argv[1l]:"");
If the given string is bigger than the local buffer

the stack will be corrupted and the affacker may
execufe code.

$ rapatch bin patch.txt
$ rapatch attach:// 3842 patch.txt

Example: Solutions

We can workaround or fix the issue.. depending on
the time or requirements we have 1o give a solutfion
to the issue:

* change stackframe of function length
- overflow will be still there, but will make the
program safe for a standard attack like worms or
kiddies do.

* use strnepy
- more complicated pafch (code will noft fit)
- a perfect target for rarc2 and rapatch

Solution: Resize stack frame

Changing the stack frame size is a simple and effec-

five solufion to change the way the exploit must
work.

$r2 -w a.out

0x8048312] > s sym readbuf +3
0x8048312] > pd 3

x8048312 55 push %ebp
0x8048313 89e5 nov %esp, Yebp
0x8048315 83ecl8 sub $0x18, %esp
0x8048312] > s+3

0x8048315] > wa sub esp, 0x1024

Solution: Using strncpy

The function we have to call in order to make the

code secure reguires one argument more to define
the boundaries of the tfarget buffer.

If we have not enought space to push another argu-
ment 1o the stack have to wrap the execution flow.

Let’s see the what we need..

Solution: A nest for our eggs

Where should we put our eggs?

- function paddings

- unused symbols (like init, fini)

- plugins (shared memory)

- injected libraries (LD_PRELOAD)
- mmaped bins on disk

- FMI: read phrack 64

Solution: Hook call

Hooking calls is probbably the easiest way to redirect
code by patching binaries. Calls or branch+link
INstructions are constructed by (opcode)(delta). The
delta address can be modified in order to branch to
our code with 3 byte delta addressing.

A branch fo an import can be wrapped patching
the call opcode and then branching back to the
caller address.

Calls store the return address in stack (x86) or in @
register on (arm), so we can easily restore the work-
flow.

Solution: 2 byte patch (eb)

Another way to get a place for our eggs is by inject-
iINg short jumps (2 bytes) in the function prelude. They
can branch to near addresses (+/- 129 bytes).

We can replace a 2 byte insfructions (mov esp, ebp)
INn order to redirect to a bigger place where we put
our egg.

nov esp, ebp -> jnp short ...

$r2 -wmalloc://200000 _
0x00001000] > e asm profil e=si npl e
0x00001000] > wx eb00 && pd 1
x00001000 jnp 0x1002 [1?
0x00001000] > wx eb7f && pd 1
x00001000 jnp 0x1081 [1?
0x00001000] > wx eb80 && pd 1
x00001000 jnp Oxf82 [1]
0x00001000] > wx ebff && pd 1
x00001000 jnmp 0x1001 [1?

Example2: format string

A simple format string vulnerable program:

Int main(int argc, char **argv) {
\ printf (argv[1]);

The way pafched code should decompile as:

printf ("%", argv[1]);

Solution: format string

Hooking the call with our printf frampoline

$ cat fntstr.rasm
.equ printf, 0x8048400
ent er
| ea eax, dummy
nmov [esp+4], eax
| ea esp, dummy
call printf
| eave
; r et
u ;
.sppyn "os"
$ rasn? -f fntstr.rasm

Example4: boundaries

A famous tramoline boundary vuln in the SMB imple-
mentation in Win/, Vista, 2008 (CVE-2009-3103)

The protocol version word (16bitfs) Is used as an index
tfo a pointer table without any check.

This issue was reported as a DosS by Laurent Gaffie

http://g-1aurent. bl ogspot. cont’ 2009/ 09/ w ndows-
vi st a7- snb20- negot i at e- protocol . ht m

Later Ruben Santamartaublished that it was
exploitable

http://Dblog.48bits. com 2009/ 09/ 08/ acer ca- del - bsod-
de-srv2sys

Example4: boundaries

This is The vulnerable code of the CVE-2009-3103:

nmovzx eax, word ptr [esi+0xc]
nov eax, Vali dateRouti nes|eax*4]

test eax, eax
jnz bb_156¢9
nov eax, 0xc0000002

jmp bb_156¢cc
bb_ 156¢9:

push ebx
cal |l eax

bb 156c¢cc:

r et

Solution: boundaries

Some languages (like Vala) support {pre,posticondi-
fions.

This is quite close to pseudocode, but allows To
define in an elegant way the restrictions for a func-
fion To run.

We can wrap the function call by a precondifion
frampoline which checks and passes the filtered
arguments to the destination function.

test eax, eax # bottomlimt (<0)
js ${sym food} o

chp eax, 128 # top limt

ja ${sym food}

Exampleb: null pointers

Not usually exploitable, but annoying if the program
yOU use crashes because of this.

Fixing It results in missing functionality because of the
bug in the target program.

cnp $0, 8(%esp)
]z | eaveret

test eax, eax
]z | eaveret

Some real examples

We are going to analyze the w32 LNK vulnerability
and the IOS PDF bug in order to see how they work
and find a fix.

W32 LNK bug (CVE 2010-2568)

Exploited by stuxnet. But it was in fact a pretfty old
bug.. which is respawned every few years :)

The key of this vulnerabilty consists in executing code
placed in the consfructor of a DLL library which has
been specified as an icon of an LNK shortcuf file.

The LoadLibraryW of the DLL is friggered by an albso-
lute path in the icon of the crafted LNK file.

http://ww.ivanl efQu.tuxfamly. org/ ?p=411

W32 LNK bug (CVE 2010-2568)

The metasploit exploit serves the LNK and the DLL as
a randomized file via Web DAV which is displayed as

a shared directory service by Windows which can be
browsed.

$ cat exploit.sh

#!/bin/s _
cd / hone/ pancake/ pr %/ nmet aspl oi t
sudo ./mefcli P << EOF

use w ndows/ browser/ ns1l0 046 shortcut icon dl || oader
set SRVHOST 0.0.0.0

set SRVPCORT 80

set PAYLOAD w ndows/ exec

set CMD calc

set LHOST 0.0.0.0

set LPORT 8081

e)C(]E—I oi t
E
Open "My PC" on Windows. Go for a shared service and
LoadLibraryW 1o be executed by explorer.exe

W32 LNK bug (CVE 2010-2568)

To see how the exploit works we can wget the .Ink
and .dll files, attach the debugger to the explorer
process and wait for LoadLibraryW to go

$r2 -d ‘tasklist L grep explorer exe %Prlnt $1}°
1 0x004030d8] > .!rabin2 -rs \mnndoms\systenB kernel32 dl |
1 0x004030d8| > db syn1LoadL|braryVV
| 0x004030d8]| > dc
| 0x004030d8] > s eip
| Ox/7car78712| >
| Ox7ca78712] > pm ds @ esp
0x00f 5e9c4 0x0400020
Ox00f 5e9¢8 "Z:\129dd92fgl.dl|"
| Ox/7ca/8/712]> "wa npv eax, 0;ret”
| Ox7ca78712| > db-sym LoadLi braryW
| Ox7car/8712] > wc

iOS PDF bug (CVE 2010-1797)

The site jailbreakme.com exploited it fogether with
an iOS kernel bug which permits priviledge scalation.

The vulnerabillity is in the freetype library (CFF)

- freetype is GPL, so we can get the fix from the git
repo

| one p://git.savannah. nu.org/cqgit/freetypel/freetype2.
| ff c8el

It C ht t
It d 236f c8 a9459d05656013727al171/dbf a425c?2

QQ

I N
| f

9

synbol cff decoder parse charstrings
(decoder->top - stack >= CFF_MAX OPERANDS)
ot

#
+
+ o Stack Overfl ow,

iOS PDF bug (CVE 2010-1797)

System libraries and Frameworks in iPhoneOS>3.0 are
stored inside the dyld cache.

Each ipsw from Apple comes with new dyld cache
(C95MB) and each library/binary is built with random-
ized symlbol order.

This makes plain bindiffing impossible at byte level.

We can use radiff2 -g to analyze symbols and find dif-
ferences between the tTwo given binaries.

System wraps all dyld_ calls in order to open files from
cache instead of the filesystem, so machO loader,
gdb and other can still work, but libraries are noft in
the filesystem.

iOS PDF bug (CVE 2010-1797)

| used to extract the caches of two different iPad
devices running 3.2 and 3.2.1 respectively:

$ rabin2 -A ../dyld_shared_cache_arnv7 |
000 / System Li brary/ Privat eFr amewor ks/ St or eSer vi ces.
framewor k/ St oreServi ces arm 32 (Unknown arm subt ype)
001 / System Li brary/ Franewor ks/ CFNet wor k. f r amewor k/
CFNet wor k arnLBZ_(Unknomn_arn1subtyp6)
002 /usr/lib/libarchive.2.dylib arm32 (Unknown arm..

$ rabin2 -x dyld shared cache _arnv7 |i bCGFreetype. A dylib

iOS PDF bug (CVE 2010-1797)

Checking for the symbols of each library we get the
same number of functions

$ rabin2 -s i bCGreetype. A dylib.3.2 > /dev/null
864 synbols _

$ rabin2 -s i bCGreetype. A dylib.3.2.1 > /dev/null
864 synbol s

Symbol order in libCGFreetype looks not randomized.
But you may find this in other libs like UIKIt.

$rabin2 -s UKit-3.2 Lhead | awk -F = "{print $2" "$9}’
0x31602170 of fset _CGArfi neTransfornfronttring
Ox315e6adc of fset CGPointFronttring

0x3160234c offset CGRectFronttring

$rabin2 -s UKit-3.2.1 |head | awk -F = "{print $2" "$9}’
0x3022e0d8 of fset CGAffineTransfornftronttring

0x30212a44 offset CGPointFronttring

0x3022e2b4 offset CGRectFronttring

iOS PDF bug (CVE 2010-1797)

As seen In the git, the vulnerabillity is found in the
_cff_decoder_parse_charstrings symbol which incor-
recly check the boundaries of the arguments in the
VM of the fonts.

Cydia published a PRELOAD patch based on the
MobileSubstrate framework which consists on A sys-
tem-wide library preloading that offers many ways to
extend or manipulate the iOS interface and function-
ality. (sms helper, etc..)

The patch from cydia is not opensource, but analyz-
INg it with r2 is as simple as expected.

iOS PDF bug (CVE 2010-1797)

Let’s unpack the debian package from cydia..

$ apt-get install com saurik.iphone.cve-2010-1797_11.0. 324
% cd / var/ cache/ apt/ archi ves
a
$ tar xzvf data.tar.gz
Li brary
Li brary/ Mobi | eSubstrate o _
Li brary/ Mobi | eSubstrat e/ Dynam cLi brari es _
tlbrary/NbbiIe.../.../PDF atch_CVE-2010-1797.dyl i Db

r x comsauriKk.iphone.cve-2010-1797 1. 0. 3245-1 |1 phoneos}-

/
L
y

[Li brary/ Mobile.../.../PDFPatch_CVE-2010-1797. pli st

ar n

The dylib is the mobilesubstrate plugin that fixes the bug.

iOS PDF bug (CVE 2010-1797)

The PDFPatch CVE-2010-1797.dylib library is the
mobilesubstrate plugin that patches the freetype
library in memory to fix the bug

% cg L|brarglwbblIeSubstrate/Dynan1cL|brarles/
r2 *.d

0x00000dfc]> s sym _ZL13 MsInitializev
0x00000f 08] > pd

O0x00000f 08 ush 8r7 | r}

0x00000f Oc dr r [pc, #12]

0x00000f 10 add r7, sp, #0
0x00000f 14 add r0, pc, rO _ _
0x00000f 18 bl inp. dyld register func for_add | mage
0x00000f 1c pop {r7, pc}

[OxOOOOOdfc]> S inm. dyld reglster func_for_add i mge

Questions?

ldeas, questions?

jan seme li wile sona? o tokil
wile e toki suli ni li pona fawa jan :)

Thanks for listening!

