RE-Learnm wW/R2

@pancake@infosec.exchange // NN2025

mailto:pancake@infosec.exchange

Sergi Alvarez aka pancake

e Mobile Security Research Engineer at NowSecure

o

e Author and leader of the Radare project
e [ree Software enthusiast and developer

‘T {)))

Target Audience

Newcomers to the Low Level Reigns
Commandline cowboys

Malware analysts

Unix Enthusiasts

First of all, let's understand better the audience:

Do you know and use radare2?
Can you read assembly?

What about Reverse Engineering?
Toolkit overview

Setup r2 and get comfortable in the shell
Analyzing binaries, from headers to the code
Scripting tasks in Python and Javascript
Popular extensions and plugins

Dynamic Instrumentation Debugging / Tracing
Learn more (chats + books)

Take these slides as a reference!

e Focus on practical examples
e GCet comfortable in the shell

What's
radareZ

The
Libre Software

Reversing Framework

Back in 2006..

e | was a forensic analyst
o And had to recover some deleted files from a mac
o | was not allowed to use company software

e So | wrote my own thing
o A portable unix-centric hexeditor for 64bit seeks

e 18 years after that it's still kicking

Libre RE Framework with UNIX philosophy in mind.

e Purely written in C, portability and control matters
o Very extensible through plugins and scripts

e Added disassembler, binary parser, analyser
o Debugger, Emulator, Scripting, GUI

e One-man project most of its lifetime

e Always from git or latest release.

$ git clone https://github.com/radareorg/radare2

$ radare2/sys/install.sh

https://www.radare.org

https://github.com/radareorg/radare2
https://rada.re

The official GUI (but there are more)
e Runson BSD, Haiku, Linux, macOS, Windows
Check the release page or use flatpak

https://github.com/radareorg/iaito

Get your workshop environment ready!

¢ Install radare2 from git

Introduction
To The Shell The Magic Of The

Commandline

Commandline

Main way to interact with radare2 is through the shell

Basic posix shell commands (1s, cd, rm, cat, ..)

Learning the commands and syntax matters!
Subcommands just add a letter after the root one
Useful for scripting and automation

Doing things faster than using the mouse

S = seek (s 0x/s..) a = analysis

p = print (px / pd) V = visual/panels
f =flags e = eval config

i =info ? = help/math

W = write I = system shell

q = quit d = debugger

Command Operators

| = redirect to process (like in posix shell)

> = redirect to file ($file are internal)

~ = internal grep (indent json, xml, code, filter words)
= comment

; = command separator

? = show command help

Command Suffixes

? = help message

j =json

* = r2 commands (scripts)

g = quiet (less verbose)

, = comma separated values (table)
k = key-value

Command Prefixes

(number) = repeat a command N times
‘ = single quote, to avoid parsing special characters
?t = calculate execution time
: =lo command
" = replace command output inline
. = run script

Iterator Operator

Useful to run commands in different items

e [unctions, flags, registers, symbols, basic blocks, ..

e @-temporal seek
e @@ - repeat command on different places
e @@@ - advanced repeat actions

See @7 @@7 @@@7 for help

Useful Commands

Combine and learn new commands every day!

Recursive Help: ?*

JSON indent (json path queries like jq): ~{}
HUD filtering: ~...

Analyse all symbols: af @@ sym*

Set, list flags: f

Comments: CC

Commandline Exercise

Open afile (/bin/1ls ;D)

Dump bytes and disassemble some instructions
Seek to different addresses

Analyze code / list and count functions

Use tab to autocomplete flags

Enter visual mode (v, V)

o Bonus: Try the new Visual Matrix (V#)

10

The lowest layer In r2,

where everything looks
like a file.

List of uri handlers exposed by the |O plugins:
$ r2 -L

You can find more plugins if you need them

$ r2pm -s ..

The plugins expose:

Open/Close = handle uri : // to select plugin
Seek = used to move around, 64 bit offsets, getsize
Read/Write = basic 10 operations

System = run a command return string with result

Maps and File Desriptors

Use 0 and om commands to list files and their maps

e Necessary to configure the memory layout

[0x100003a84]> o

3 - r-x 0x00025af@® /bin/ls

4 * r-- Qx00002510 null://9488
[0x100003a84]> om

* 5 fd: 3 +0x00010000 0x100000000
- 4 fd: 3 +0x00018000 0x100008000
- 3 fd: 3 +0x0001c000 0x10000c000
- 2 fd: 3 +0x00020000 0x100010000
- 1 fd: 4 +0x00000000 0x100015af0
[0x100003a847> |}

0x100007fff r-x fmap.__TEXT
0x10000bfff r-- fmap.__DATA_CONST
0x10000ffff r-- fmap.__DATA
0x100015aef r-- fmap.__LINKEDIT
0x100017fff r-- mmap.__LINKEDIT

Run I0 Commands

IO Plugins expose an optional callback to run
commands through the : prefix from the core shell.

e Expose custom functionality

O

O
O
O

FileSystem (when using the plugin)
Debugger (when using the)
Binary parsing (show symbols, ..)
Custom IO configurations (VM Layout/.)

http://fs.io
http://debug.io

Searching Patterns

The / command is used to search stuff

/ - text

/X - byte patterns (with binary mask?)
/a - assembly code

/C - cryptographic materials

/m - magic headers

/z - find strings

Create your custom configuration file in your home!

e r2 -H R2_RCFILE
e Select atheme with eco
e Change scr. and asm. options

Structured
Binary Data

Files with Executable
Code Structured with
_ Headers and Metadata

Binary Formats

The list of file formats supported is very large:
$ rabin2 -L

ELF, MACHO, PE, COFF, NE
DYLDCACHE, KERNELCACHE
CLASS,DEX,LUA,PYC

GB, NES, 3DS, SMS, SMD, XBE, Z64, NSO

Executables and libraries store information needed by
the operating system to load and execute them.

Sections and segments

Symbols, imports and exports
Entrypoints, constructors / destructors
Strings, Libraries / Dependencies

$ rabin2 -H (ih)

In GNU/Linux we use the 1dd program to list the
libraries a program is using.

In r2 we can use il, which is portable and doesn't
have code execution risks.

e Same functionality is available in rabin2 -1

Sections vs Segments

Rabin2 unifies concepts for simplicity

iS vs iSS

e Sections are only needed for static analysis tools
e Segmentsis what the runtime linker needs.
e Check with * and om.

Plain text stored in the read-only sections of the binary

Sometimes compilers put code in rw sections
Eventually they are inside unmapped headers
Sometimes the text is generated with code
Or maybe it is encoded (baseb4, rotl3, ..)

$ rabin2 -z /bin/ls (see -zz and -zzz)

Exporting binary details as script

Using the -r flag to create an r2 script

e This -r works across all tools in r2land
e 2 commands use the * suffix

Commands inside r2

R2 is the tool that unifies all the other tools.
e Use RCore which links against RBin, RArch,..

The rabin2 functionalities are implemented under the
1 command.

$ rabin2 -z == iz, -zz = izz, ..
e Check the shell

Decoding
Instructions

Analyzing program code,
control flow graphs,
string references, ..

Different representations of the same

Zeros and Ones (Machine Code)

Bytes in Hexadecimal (octal was more readable)
Plaintext Assembly
Pseudo Disassembly

Intermediate Representation (ESIL for r2)

Supported Architectures

$ rasm2 -L
Note that arch plugins can optionally provide

e ESIL representation for emulation
e Encoding (assembler) support
e Different CPU models

Visual Instruction Decoding

o Vi

r2's bit editor: (=pfb 3b4b formatting)

adr: 0x00006db4

hex: 488b0525c201¢€

len: 7

shf: >> 0 << 55

asm: mov rax, qword [rip + 0x1c225]
esl: 0x1c225,rip,+,[8],rax,=

chr\: IHI I?l I?I IZ‘ | I?I I?I I?I IHI
dec: 747 139 5 37 | 194 1 (0] 72
hex: 0x48 (0)'¢:15) 0x05 0x25 | 0xc2 0x01 0x00 0x48
bit: .1..1...‘] 111 1.1 ..1..1.1 | 11 11..1...
bit: 0 00-000 -000:0-- OOO00-0:- 00:00:0- | 0000 0 0000000+ OOCOOEOO 0-00-000
Gl R e e e e e e e e e e e e e e e I e e e e e e e e e R e e
00001100 0OOOOO11 33111333 | mov, rax, qword, [rip, +,
NANAE SVAENNAN N 00 mov = 02042
AN NAENAN 1r rax = 0130
NN, e 3m [rip = 00
51 = 05
ar = 00

Evaluable Strings Intermediate Language

Designed by and for radare2

Like FORTH, but using commas instead of spaces
Expresses the instruction behaviour

Simple to parse, fast to execute

mov eaX, 33 => 33,eaX, .=

Disassembler Options

> e arch. # architecture options
> e asm. # display disasm options

Enable emulation for computed references

e asm.describe
e asm.emu/emu.str

Control Flow Graph, for function basic blocks
o agf
Formats: ascii art, graphviz, mermaid, ..

e agfd, agfm, ..

e Open /bin/sleep with -nand -w
e Use o0 and omto see the differences
e Patch the entrypoint with a ret
o Advanced: modify the default behaviour
e radiff2 to understand the patch we did
e EXxecute the patched program

Uplifting To
ngh LEVEI. Retrieving a high level
Languages representation of the

underlying assembly
code

r2 -A=aa / r2 -AA = aaa

e Functions/BB/Ops
o afl, afb, ao

e Different analysis: aa?

e Options:e anal.

Use them wisely

e Default is not always the best

[6x6dde]

0x6ddd [ob]

0x6e08 [09g]

Oxédeb [0

d]

0x6df7 [of]

The art of creating high level representations of the
assembly code, aka, the inverse step of compilation.

e Assumptions to fill the gaps with the info we miss

Pseudo Decompilation with pdc

Native to r2, works on all archs

Enables asm.pseudo

Prints each basic block with labels and gotos
Uses ESIL to reference ALL strings

Very verbose, but useful when others fail
Very fast, perfect for grepping around

Decompiler for r2 written in Javascript

e Quite correct, few optimization passes

Supports most common archs
Actively maintained and developed
Available in the pdd command

By @wargio/deroad

650;\\

8051

ARM Thumb
ARM 32/64
AVR

DENAVAR

m68k

MIPS
PowerPC 32/64
SuperH
SPARC

v850
WebAssembly

x86/x64

\ RISC-V

Native plugin linking to the ghidra-native fork of
ghidra’'s decompiler (only c++ code, no java)

e Not aligned with r2 analysis
e Good results sometimes, but misses lot of info

Decompiler based on R2AI:

e Takes N decompilations as input
e (GCenerates better output combining them
e (Cuess variable names and arguments

o Best Local: gpt-0ss:20b

o Best Remote: Claude

e [nstall r2dec, r2ghidra, decal
e Try them on different functions of different binaries
e Understand the differences

Debugging
And Tral:ing Manipulating program

execution at runtime

Low Level Debugging

R2 is a tool for reversing, not for developers

e No plan to replace gdb/lldb
e |t's not a source debugger.

But it's great when you don't have the source
e Easy to script and automate

$ r2 -d [program|pid]

The native backend works on all major platforms!
e Linux, macOs, iI0S, Android, Windows, *BSD, !!
But sometimes we need to do remote debugging
e Over TCP/IJTAG, use the gdb:// protocol
Windbg / gdbio / gemu / bochs support..

Showing and changing register values

> dr, dr=, dr 32, dr rax

e Telescoping with drr

We can also telescope memory with pxr@r :SP

e Register profiles with drp

Use the db command for that..

No need to use a temporal breakpoint. You can
continue until address with dcu

With some archs sometimes you may heed to use:

e e dbg.hwbp

Memory Maps

At runtime, the address space is not fully mapped

e Use dm and dmm to understand the layout

ldentify regions by permissions and name

e \Where's the stack, inspect it with pxr

Heap Structures

Heap memory is structured in a way that can be
parsed and detect corruptions, which is useful for
analyzing and exploiting buffer overflow vulnerabilities.

e Check the dmh command

Start debugging a program, change control flow by
changing the program countetr.

e Manipulate register values: dr, dr=
e |dentify location with maps: dm
e Continue execution: db, db-*, ds, dc

Automate actions,
Solve boring tasks

Quickly

We know how to use the shell.
e r2 -1orthe.command.

What about running a command and capturing the
output displayed in return?

e That's called r2pipe

We can also use bindings to the native API (rlang)

Supported Languages

For r2pipe you can literally use ANY language

e Python, JavaScript, Ruby, Nim, Scheme, ...

Even native!

e C, Vala, Rust, Swift, Zig, D, ...

Is the only scripting language that is widely available,
uses No setymp and it's very easy to use and many
languages have it as a target for transpilation.

e Nim, TypeScript, V, Scala, Dart, LUA, Scheme,...

We ship quickjs, scripts must be named .r2.js

Example using the basic r2pipe api

import r2pipe

r2 = r2pipe.open("/bin/1s")
out = r2.cmd("?E Hello World")
print(out)

FZ2.quit()

R2Pipe Backends

R2Pipe can be used in different environments:

Spawn + pipes

Spawn + stdio

Fork current session + pipes (#!pipe)
Talking to an HTTP websever /cmd
Dlopen RCore API

R2Pipe JSON (cmdj)

Appending j to any command in r2 shows JSON.
Using the cmdj methods returns an object.

We can autogenerate object schemas and have
autocompletion in our favourite editor!

cmdj(command: string) : string {
return JSON.parse(this.cmd(command));

}

R2Pipe cmd vs call

Running a command implies too much internal work
sometimes that we can bypass with .call()

Don't parse special characters
Avoid command injection
Support temporal seek .callAt()
Faster execution for large scripts

Performance

Who said speed?

Sometimes we don't need the output

e Use cmdO or call0 commands

R2 scripts

Introduced in r2-5.9.x, still under development and not
fully handled; needs more testing, feedback and
contributions.

Protocol is there

Fully compatible with r2pipe

Uses the { command from r2

Captures stderr and return code and value

What about having an idiomatic and high level AP| on
top of the r2pipe primitive?

e Similar to the Frida API (NativePointer, ..)

This project is a collection of template source codes in

different languages for starting new plugins or scripts
for radare?2.

$ r2pm -ci r2skel
$ r2pm -r r2skel ..

Install r2skel and write a core plugin in your language
of choice to add a new command in the r2 shell.

Choose wisely!

e C, Python, R2JS

Using the r2pm
Pluglns package manager,

Installing plugins to
add new features.

Extensibility

We are about to reach the end of this training, but we
won't be over without having a look at all the
awesome tools that can be integrated with radare?2!

e Use r2pm to search and install them!

The best way to combine dynamic instrumentation
with static analysis, a powerful shell on top of the
tracing capabilities of Frida.

$ r2 frida://0

Exchange analysis info from/to r2

e GCetan r2shell inside those tools
e Using r2pipe
e The r4ghidrais a full rewrite of the r2 shell in Java

e |Looking for contributors!

Useful for crypto constant and malware analysis

e Create Rules with patterns

o Integrated with r2 analysis and metadata
e Loadthem into memory
e Scan for patterns in memory or file

Symbolic Execution Solver (in Rust) on top of ESIL.

e Remake of esilsolver (z3py)

e Can resolve conditions that must be matched to
reach a specific address

e Resolve passwords from crackmes, ..

GNU/POKE is a programming language for describing
binary files. Exposes a shell with powerful scripting
capabillities.

e [ntegrates well with radare?
e Canrunr2 commands from POKE
e Run POKE expressions in the R2 shell

Integrate Angr decompiler with radare2

e Looking for contributors and better integration
e A bit slow the first run needs to analyze the whole
binary

Integrating language model capabilities within r2.

e Supports any local or remote LLM provider
e FEasily scriptable with r2pipe
e Integrated with the analysis context

I'll be speaking on Saturday about it!

The standard file format to exchange findings from
different source and binary analysis tools.

e Uses JSON format
e \Well structured and extensible
e Inspect vulnerabilities found by other tools

rediaphora

A fork of the Diaphora tool from Joxean for IDA, but
maintained to work with radare?2.

Designed to work on scale

Battle tested on fuzzed and malware binaries
Looking for contributors!

No SQLITE backend

Needs a GUI|

Choose your favourite plugins and install them!

$ r2pm -ci r2ghidra r2dec r2yara r2svd

Continue
Learning

Reference Books, Chats,
Blogs, Manpages,
_ Videos, Conferences..

Crackmes vs Projects

Do you have a project in mind?
e Go for it!

If you are used to other tools, make them play well
with r2. It's easy and gives you lots of capabilities

As | use to say, the best documentation is the source!

e Read as much code as you can, and when you are
tired write more or refactor it!
e Coding plugins for r2, programming tools on top of

It, or adding new commands are great ways to
learn more about r2

e Fix bugs, add tests, open tickets!

Yep! We have an official book and it's opensource

https://github.com/radareorg/radare2-book

Feel free to contribute and make it better!

e |t's also available as an r2 plugin

Join our Discord, Telegram or Matrix chats!

e \We have pancakes ..i mean cookies!

The Fediverse!

Follow @radareorg@infosec.exchange

(if you're still not in the fediverse, it's never too late!)

Exercise: Attend r2con!

Our periodic conference where r2 users, developers
and hackers around the world meet in person!

e This 2025 it's Only Online
e November 24th, 25th

https://www.radare.org/con

Radare2 TV

e An index to find videos to learn to use radare2

https://www.radare.org/tv

Questions?

