
RE-Learning w/R2

@pancake@infosec.exchange // NN2025

mailto:pancake@infosec.exchange

Who Am I?

Sergi Àlvarez aka pancake

● Mobile Security Research Engineer at NowSecure
● Author and leader of the Radare project
● Free Software enthusiast and developer

Target Audience

● Newcomers to the Low Level Reigns
● Commandline cowboys
● Malware analysts
● Unix Enthusiasts

Poll

First of all, let’s understand better the audience:

● Do you know and use radare2?
● Can you read assembly?
● What about Reverse Engineering?
● Toolkit overview

Contents

● Setup r2 and get comfortable in the shell
● Analyzing binaries, from headers to the code
● Scripting tasks in Python and Javascript
● Popular extensions and plugins
● Dynamic Instrumentation Debugging / Tracing
● Learn more (chats + books)

Disclaimer

Take these slides as a reference!

● Focus on practical examples
● Get comfortable in the shell

What’s
radare2

—

The

Libre Software

Reversing Framework

History

Back in 2006..

● I was a forensic analyst
○ And had to recover some deleted files from a mac
○ I was not allowed to use company software

● So I wrote my own thing
○ A portable unix-centric hexeditor for 64bit seeks

● 18 years after that it’s still kicking

In short

Libre RE Framework with UNIX philosophy in mind.

● Purely written in C, portability and control matters
○ Very extensible through plugins and scripts

● Added disassembler, binary parser, analyser
○ Debugger, Emulator, Scripting, GUI

● One-man project most of its lifetime

Installation

● Always from git or latest release.

$ git clone https://github.com/radareorg/radare2

$ radare2/sys/install.sh

https://www.radare.org

https://github.com/radareorg/radare2
https://rada.re

Iaito

The official GUI (but there are more)

● Runs on BSD, Haiku, Linux, macOS, Windows

Check the release page or use flatpak

https://github.com/radareorg/iaito

Exercise

Get your workshop environment ready!

● Install radare2 from git

Introduction
To The Shell

—

The Magic Of The
Commandline

Commandline

Main way to interact with radare2 is through the shell

● Basic posix shell commands (ls, cd, rm, cat, ..)

● Learning the commands and syntax matters!
● Subcommands just add a letter after the root one
● Useful for scripting and automation
● Doing things faster than using the mouse

Basic Commands

s = seek (s 0x/s..)

p = print (px / pd)

f = flags

i = info

w = write

q = quit

a = analysis

V = visual/panels

e = eval config

? = help/math

! = system shell

d = debugger

Command Operators

| = redirect to process (like in posix shell)

> = redirect to file ($file are internal)

~ = internal grep (indent json, xml, code, filter words)

= comment

; = command separator

? = show command help

Command Suffixes

● ? = help message
● j = json
● * = r2 commands (scripts)
● q = quiet (less verbose)
● , = comma separated values (table)
● k = key-value

Command Prefixes

● (number) = repeat a command N times
● ‘ = single quote, to avoid parsing special characters
● ?t = calculate execution time
● : = io command
● `` = replace command output inline
● . = run script

Iterator Operator

Useful to run commands in different items
● Functions, flags, registers, symbols, basic blocks, ..

● @ - temporal seek
● @@ - repeat command on different places
● @@@ - advanced repeat actions

See @? @@? @@@? for help

Useful Commands

Combine and learn new commands every day!

● Recursive Help: ?*
● JSON indent (json path queries like jq): ~{}
● HUD filtering: ~…
● Analyse all symbols: af @@ sym*
● Set, list flags: f
● Comments: CC

Commandline Exercise

● Open a file (/bin/ls ;D)
● Dump bytes and disassemble some instructions
● Seek to different addresses
● Analyze code / list and count functions
● Use tab to autocomplete flags
● Enter visual mode (v, V)

○ Bonus: Try the new Visual Matrix (V#)

IO
—

The lowest layer in r2,
where everything looks
like a file.

IO Plugins

List of uri handlers exposed by the IO plugins:

$ r2 -L

You can find more plugins if you need them

$ r2pm -s …

IO Primitives

The plugins expose:

● Open/Close = handle uri :// to select plugin
● Seek = used to move around, 64 bit offsets, getsize
● Read/Write = basic IO operations
● System = run a command return string with result

Maps and File Desriptors

Use o and om commands to list files and their maps

● Necessary to configure the memory layout

Run IO Commands

IO Plugins expose an optional callback to run
commands through the : prefix from the core shell.

● Expose custom functionality
○ FileSystem (when using the fs.io plugin)
○ Debugger (when using the debug.io)
○ Binary parsing (show symbols, ..)
○ Custom IO configurations (VM Layout/..)

http://fs.io
http://debug.io

Searching Patterns

The / command is used to search stuff

● / - text
● /x - byte patterns (with binary mask?)
● /a - assembly code
● /c - cryptographic materials
● /m - magic headers
● /z - find strings

Exercise

Create your custom configuration file in your home!

● r2 -H R2_RCFILE
● Select a theme with eco
● Change scr. and asm. options

Structured
Binary Data

—

Files with Executable
Code Structured with
Headers and Metadata

Binary Formats

The list of file formats supported is very large:

$ rabin2 -L

● ELF, MACHO, PE, COFF, NE
● DYLDCACHE, KERNELCACHE
● CLASS,DEX,LUA,PYC
● GB, NES, 3DS, SMS, SMD, XBE, Z64, NSO
● ..

Parsing Headers

Executables and libraries store information needed by
the operating system to load and execute them.

● Sections and segments
● Symbols, imports and exports
● Entrypoints, constructors / destructors
● Strings, Libraries / Dependencies

$ rabin2 -H (ih)

Libraries

In GNU/Linux we use the ldd program to list the
libraries a program is using.

In r2 we can use il, which is portable and doesn’t
have code execution risks.

● Same functionality is available in rabin2 -l

Sections vs Segments

Rabin2 unifies concepts for simplicity

iS vs iSS

● Sections are only needed for static analysis tools
● Segments is what the runtime linker needs.
● Check with * and om.

Strings

Plain text stored in the read-only sections of the binary

● Sometimes compilers put code in rw sections
● Eventually they are inside unmapped headers
● Sometimes the text is generated with code
● Or maybe it is encoded (base64, rot13, ..)

$ rabin2 -z /bin/ls (see -zz and -zzz)

Exporting binary details as script

Using the -r flag to create an r2 script

● This -r works across all tools in r2land
● r2 commands use the * suffix

Commands inside r2

R2 is the tool that unifies all the other tools.

● Use RCore which links against RBin, RArch,..

The rabin2 functionalities are implemented under the
i command.

$ rabin2 -z == iz, -zz = izz, …

● Check the shell

Decoding
Instructions

—

Analyzing program code,
control flow graphs,
string references, ..

Decoding

Different representations of the same

● Zeros and Ones (Machine Code)
● Bytes in Hexadecimal (octal was more readable)
● Plaintext Assembly
● Pseudo Disassembly
● Intermediate Representation (ESIL for r2)

Supported Architectures

$ rasm2 -L

Note that arch plugins can optionally provide

● ESIL representation for emulation
● Encoding (assembler) support
● Different CPU models

Visual Instruction Decoding

● Vd1

ESIL

Evaluable Strings Intermediate Language

● Designed by and for radare2
● Like FORTH, but using commas instead of spaces
● Expresses the instruction behaviour
● Simple to parse, fast to execute

mov eax, 33 => 33,eax,:=

Disassembler Options

> e arch. # architecture options
> e asm. # display disasm options

Enable emulation for computed references
● asm.describe
● asm.emu/emu.str

Graphs

Control Flow Graph, for function basic blocks

● agf

Formats: ascii art, graphviz, mermaid, ..

● agfd, agfm, …

Exercise

● Open /bin/sleep with -n and -w
● Use o and om to see the differences
● Patch the entrypoint with a ret

○ Advanced: modify the default behaviour
● radiff2 to understand the patch we did
● Execute the patched program

Uplifting To
High Level
Languages

—

Retrieving a high level
representation of the
underlying assembly
code

Analysis

r2 -A = aa / r2 -AA = aaa

● Functions / BB / Ops
○ afl , afb , ao

● Different analysis: aa?
● Options: e anal.

Use them wisely

● Default is not always the best

Decompilation

The art of creating high level representations of the
assembly code, aka, the inverse step of compilation.

● Assumptions to fill the gaps with the info we miss

Pseudo Decompilation with pdc

Native to r2, works on all archs

● Enables asm.pseudo
● Prints each basic block with labels and gotos
● Uses ESIL to reference ALL strings
● Very verbose, but useful when others fail
● Very fast, perfect for grepping around

r2dec

Decompiler for r2 written in Javascript

● Quite correct, few optimization passes
● Supports most common archs
● Actively maintained and developed
● Available in the pdd command
● By @wargio/deroad

6502
8051

ARM Thumb
ARM 32/64

AVR
Dalvik
m68k
MIPS

PowerPC 32/64
SuperH
SPARC
v850

WebAssembly
x86/x64
RISC-V

r2ghidra

Native plugin linking to the ghidra-native fork of
ghidra’s decompiler (only c++ code, no java)

● Not aligned with r2 analysis
● Good results sometimes, but misses lot of info

decai

Decompiler based on R2AI:

● Takes N decompilations as input
● Generates better output combining them
● Guess variable names and arguments

○ Best Local: gpt-oss:20b
○ Best Remote: Claude

Exercise

● Install r2dec, r2ghidra, decai
● Try them on different functions of different binaries
● Understand the differences

Debugging
And Tracing

—

Manipulating program
execution at runtime

Low Level Debugging

R2 is a tool for reversing, not for developers

● No plan to replace gdb/lldb
● It’s not a source debugger.

But it’s great when you don’t have the source

● Easy to script and automate

$ r2 -d [program|pid]

Backends

The native backend works on all major platforms!

● Linux, macOS, iOS, Android, Windows, *BSD, !!

But sometimes we need to do remote debugging

● Over TCP / JTAG, use the gdb:// protocol

Windbg / gdbio / qemu / bochs support..

Registers

Showing and changing register values

> dr, dr=, dr 32, dr rax

● Telescoping with drr

We can also telescope memory with pxr@r:SP

● Register profiles with drp

Breakpoints

Use the db command for that..

No need to use a temporal breakpoint. You can
continue until address with dcu

With some archs sometimes you may need to use:
● e dbg.hwbp

Memory Maps

At runtime, the address space is not fully mapped

● Use dm and dmm to understand the layout

Identify regions by permissions and name

● Where’s the stack, inspect it with pxr

Heap Structures

Heap memory is structured in a way that can be
parsed and detect corruptions, which is useful for
analyzing and exploiting buffer overflow vulnerabilities.

● Check the dmh command

Exercise

Start debugging a program, change control flow by
changing the program counter.

● Manipulate register values: dr, dr=
● Identify location with maps: dm
● Continue execution: db, db-* , ds, dc

Scripting
—

Automate actions,
Solve boring tasks
Quickly

The Basics

We know how to use the shell.

● r2 -i or the . command.

What about running a command and capturing the
output displayed in return?

● That’s called r2pipe

We can also use bindings to the native API (rlang)

Supported Languages

For r2pipe you can literally use ANY language

● Python, JavaScript, Ruby, Nim, Scheme, …

Even native!

● C, Vala, Rust, Swift, Zig, D, …

Why Javascript

Is the only scripting language that is widely available,
uses no setjmp and it’s very easy to use and many
languages have it as a target for transpilation.

● Nim, TypeScript, V, Scala, Dart, LUA, Scheme,...

We ship quickjs, scripts must be named .r2.js

R2Pipe

Example using the basic r2pipe api

R2Pipe Backends

R2Pipe can be used in different environments:

● Spawn + pipes
● Spawn + stdio
● Fork current session + pipes (#!pipe)
● Talking to an HTTP websever /cmd
● Dlopen RCore API

R2Pipe JSON (cmdj)

Appending j to any command in r2 shows JSON.

Using the cmdj methods returns an object.

We can autogenerate object schemas and have
autocompletion in our favourite editor!

R2Pipe cmd vs call

Running a command implies too much internal work
sometimes that we can bypass with .call()

● Don't parse special characters
● Avoid command injection
● Support temporal seek .callAt()
● Faster execution for large scripts

Performance

Who said speed?

Sometimes we don’t need the output

● Use cmd0 or call0 commands

r2papi

r2pipe

R2 scripts

C API

R2Pipe2

Introduced in r2-5.9.x, still under development and not
fully handled; needs more testing, feedback and
contributions.

● Protocol is there
● Fully compatible with r2pipe
● Uses the { command from r2
● Captures stderr and return code and value

R2Papi

What about having an idiomatic and high level API on
top of the r2pipe primitive?

● Similar to the Frida API (NativePointer, ..)

r2skel

This project is a collection of template source codes in
different languages for starting new plugins or scripts
for radare2.

$ r2pm -ci r2skel

$ r2pm -r r2skel ..

Exercise

Install r2skel and write a core plugin in your language
of choice to add a new command in the r2 shell.

Choose wisely!

● C, Python, R2JS

Plugins
—

Using the r2pm
package manager,
installing plugins to
add new features.

Extensibility

We are about to reach the end of this training, but we
won’t be over without having a look at all the
awesome tools that can be integrated with radare2!

● Use r2pm to search and install them!

r2frida

The best way to combine dynamic instrumentation
with static analysis, a powerful shell on top of the
tracing capabilities of Frida.

$ r2 frida://0

r2(ida|ghidra|bn)

Exchange analysis info from/to r2

● Get an r2 shell inside those tools
● Using r2pipe
● The r4ghidra is a full rewrite of the r2 shell in Java

● Looking for contributors!

r2yara

Useful for crypto constant and malware analysis

● Create Rules with patterns
○ Integrated with r2 analysis and metadata

● Load them into memory
● Scan for patterns in memory or file

radius2

Symbolic Execution Solver (in Rust) on top of ESIL.

● Remake of esilsolver (z3py)
● Can resolve conditions that must be matched to

reach a specific address
● Resolve passwords from crackmes, ..

r2poke

GNU/POKE is a programming language for describing
binary files. Exposes a shell with powerful scripting
capabilities.

● Integrates well with radare2
● Can run r2 commands from POKE
● Run POKE expressions in the R2 shell

r2angr

Integrate Angr decompiler with radare2

● Looking for contributors and better integration
● A bit slow the first run needs to analyze the whole

binary

r2ai

Integrating language model capabilities within r2.

● Supports any local or remote LLM provider
● Easily scriptable with r2pipe
● Integrated with the analysis context

I’ll be speaking on Saturday about it!

r2sarif

The standard file format to exchange findings from
different source and binary analysis tools.

● Uses JSON format
● Well structured and extensible
● Inspect vulnerabilities found by other tools

r2diaphora

A fork of the Diaphora tool from Joxean for IDA, but
maintained to work with radare2.

● Designed to work on scale
● Battle tested on fuzzed and malware binaries
● Looking for contributors!
● No SQLITE backend
● Needs a GUI

Exercise

Choose your favourite plugins and install them!

$ r2pm -ci r2ghidra r2dec r2yara r2svd

Continue
Learning

—

Reference Books, Chats,
Blogs, Manpages,
Videos, Conferences..

Crackmes vs Projects

Do you have a project in mind?

● Go for it!

If you are used to other tools, make them play well
with r2. It’s easy and gives you lots of capabilities

Source

As I use to say, the best documentation is the source!

● Read as much code as you can, and when you are
tired write more or refactor it!

● Coding plugins for r2, programming tools on top of
it, or adding new commands are great ways to
learn more about r2

● Fix bugs, add tests, open tickets!

r2book

Yep! We have an official book and it’s opensource

https://github.com/radareorg/radare2-book

Feel free to contribute and make it better!

● It’s also available as an r2 plugin

Chats!

Join our Discord, Telegram or Matrix chats!

● We have pancakes .. i mean cookies!

The Fediverse!

Follow @radareorg@infosec.exchange

(if you’re still not in the fediverse, it’s never too late!)

Exercise: Attend r2con!

Our periodic conference where r2 users, developers
and hackers around the world meet in person!

● This 2025 it’s Only Online
● November 24th, 25th

https://www.radare.org/con

Radare2 TV

● An index to find videos to learn to use radare2

https://www.radare.org/tv

Questions?

