
Reversing Java
(Malware) with Radare

Adam Pridgen
April 2014

•  Rice SecLab, a PhD Student
•  Independent InfoSec Consultant/Contractor

About me

Overview
•  Typical Java Reversing Talk

o  Decompile Code
o  Make Changes
o  Recompile and Win?

•  Java Malware: Fail!

Overview
Has this happened
to you?

Overview
•  IDA Pro 6.4 does not include meta-data

Overview
●  Malicious code analysis is hard

●  Relevant information is key

●  Tools assume code is complete or correct

●  Reversing JVM Bytecode viewed as a “simple” problem
○  Until you need to actually do it
○  Or you need to extract some type of information

●  Too Long Didn’t Listen (tldl;)
○  Radare now supports basic class file manipulations
○  Hooking by rewriting class and method names
○  Manipulation of Access Flags
○  Inserting values in constant pool
○  More detailed inspection of files

Overview

Multiple
Architectures

Command
Based

Open Source

2048

GDB Interface Hex Editor Supports IO
Layers

Extendible
Components

Multi-Language
w/ Ctypes

IL in progress

Cross
Platform

Web UI

Agenda
•  Discuss Java Class File and Format
•  Discuss Java Malware and Obfuscation
•  Introduce Java Reversing with Radare
•  Discuss Some Techniques
•  Conclude with Future Work

Java Overview

JVM Bytecode
•  ~203 Operations
•  Fairly easy to disassemble

o  Except for the built in “switch-tables”

•  JVM is Stack Based
•  Local Variables are stored in a local variable

position

JVM Bytecode
•  Caller copy the entire thread stack to caller
•  JVM resolves Class Name, Method Name,

and argument types
•  Types are not important until they are

important

Java Malware Obfuscation
•  Static Obfuscation Techniques

•  Dynamic Techniques

Java Malware via Static Obfuscation
•  Flatten Classes and Package Hierarchy
•  Homogenous type signatures
•  Make class names uninterpretable
•  Exploit compiler features
•  Dead code
•  Local variable Type overloading
•  Hiding strings or files in strange places

Java Malware via Dynamic Obfuscation
•  Reflection or Custom Class loaders
•  Starting a new process
•  Scripting Engine
•  String Manipulation
•  Encryptions

Java Malware Reversing
•  Not easily decompilable (if at all)
•  No standard tools for inspections
•  Modification is tedious to do by hand

What Radare can do with Java?
•  Basic hooking of class methods
•  Change constant pool Values
•  Modify method and field access flags
•  Disassemble code
•  Load classes from strings
•  Open the JAR and view all the files
•  Yank a file to disk or insert it in the JAR

Class File Organization

Class File
Organization

Class File
Organization

●  Magic Bytes
●  Version Information

Class File
Organization

●  Constant Values
○  Long, Integers
○  Float, Doubles
○  Strings

●  Class Definitions
●  Field Definitions
●  Method Definitions

Class File
Organization

●  Omitted, but worth
Mentioning

●  Class Definition
●  Super Class Info

Class File
Organization

●  Interface
Information

Class File
Organization

●  Access Flags
●  Name and Description
●  Attributes

○  Runtime Annotations
○  Constant Value

Class File
Organization
●  Access Flags
●  Name and Description
●  Attributes

○  Runtime Annotations
○  Code & Exceptions
○  Stack Map Table
○  Local Variable Tables
○  Inner Classes
○  ...

Class File
Organization
●  Class File Attributes
○  Runtime Annotations
○  Source File
○  User defined
○  ...

Hooking Java Methods
•  Easiest all references to a class

o  Write an implementation that wraps the target class
o  Rewrite all of the strings
o  Modify access flags
o  Put the class in the class path
o  Run the JAR File

Hooking the Easy Way
Swap
StringBuilder
with sb class

Hooking the Easy Way

Swap
StringBuilder
with sb class

Hooking the Easy Way

Swap
StringBuilder
with sb class

Hooking the Easy Way
ClassNotFound exception: 1

Hooking the Easy Way
ClassNotFound exception: 2.

Hooking the Easy Way
Copy classes to path and it works.

Hooking the Easy Way

Wrapper
classes

Hooking Java Methods +1 Complexity
•  Insert CP Objects

o  Append the CP Objects to define the new class
o  Class Info, Method Info, and Descriptor Info
o  Update the CP Object Counts
o  Modify code section and update the reference
o  Put the class in the class path
o  Run the JAR File

Primer Constant
Pool Definition

class FooClass {

String getItMethod ();
}

Assume tag idx = 2

Primer Constant
Pool Definition

Constant Pool
Definition

Resolving the
Class Name: FooClass

Constant Pool
Definition

Resolving the
Method Name: getItMethod

Constant Pool
Definition

Resolving the
Method Type:
()Ljava/lang/String;

Constant Pool
Definition

class FooClass {

String getItMethod ();
}

Hooking Java Methods ++1 Complexity
•  Direct code insertion

o  Extend the code section attribute
o  Update attribute size
o  Modify code section and insert the code
o  Update the exception handling table

Changing Access Flags

Target Java Function: exploitAnnotations

Changing Access Flags

Insight is good,
note the flag
values.

Changing Access Flags

Apply some Radare Magic Sauce

Changing Access Flags

Here is what
JD-Gui shows.

Changing Access Flags

Extracting jCrypt Classloader Key
List Files: zip://zip_file.whatevs
Access Files with: ::[index] or //path/

Extracting jCrypt Classloader Key
List Files: zip://zip_file.whatevs
Access Files with: ::[index] or //path/

Extracting jCrypt Classloader Key
Loading /c.dat from the archive, whats that?

Extracting jCrypt Classloader Key
Loading /c.dat from the archive, whats that?

Extracting jCrypt Classloader Key

Extracting the Encrypted JAR File

Using Prototypes

Using Prototypes

Using Prototypes

Using Prototypes

a type is an Enum, created from the string this.a.z

Using CFR
Decompiler

Problems with the
Exception table?

[=] Lets dump it

CFR Decompiler to
extract Java code

CFR Decompiler Augmentation

Use exc:
‘java exc 0x937’

Use prototypes:
‘java prototypes a’

Future Work
•  Enable some more static conveniences
•  Tie into a JVM for run-time information
•  Enable code instrumentation via Code Attribute
•  Look at reversing native code with JVM code
•  Move on to other managed code

implementations

Conclusion
•  Discussed some basic constructs in Java classfile
•  Introduced improvements to Radare
•  Talked about how an analyst could use them

Questions and Contact Info

Thanks For Your Time.

email: adam.pridgen@thecoverofnight.com
twitter: @apridgen
github/bitbucket: deeso

Java Reversing Tools

Radare Architecture

Recent Additions to Radare
•  Testing Framework
•  Gameboy Reversing and Emulation
•  Java Support
•  Loading/reloading binaries from buffer
•  Extending (inserting bytes in the middle)
•  Opening multiple files
•  Zip URI support

