radare

Fiberparty 2k9

Overview

In short: Advanced commandline hexadecimal editor

In long:
- Multiarchitecture/multiplatform and extensible
hex editor with disassembler and lowlevel debugger
- Abstracted 1O access
- Scripting capabilities
- Batch mode
- Code analysis with interfactive graphs
- Binary diffing with deltas
- Binary searchs with binary masks

Targets

Forensics (RAw DAta Recovery) search with binmask
Reversing (automatic and interactive code analysis)
Binary manipulation (audit binary protections)

Binary diffing (with delta support)

Pattern find and identification (aes keys, repeated bytes)

Debugging (lin/bsd/osx/w32 @ x86/ppc/arm/mips)

radare2

Need for a redesign

Set of 32 independent libraries

Aims to fully reimplement radare1 in modules

Bypass limitations of the monolitich design of radare1
Massive pluginization of functionalities

Some scriptting rules will change

radare2 structure

/

t——————t

t——————+ t——————+ +——————

diff |

| asm

| ——| cons |

core

+ ——— +
A
| + —
| |
— + | |
| | I O
S| | [
n I | I @©
M - \4 N
SN — -
I I + —
— 4+ | P I
I a1 4+ —
-+ I A | |
N O W B B =
|l I 91 1 p
M = |
(o2 N O N S
g |l | S 1 | &
I 1 O 1 I Q
— 4+ | 49 | |
I @ | | .
+ I O 1 |1 O
| Il N o= 3
| | 1 Q
[| L N)
| I O | | ©
| I & 1 |
| I O | + —
+ | | |
+ — + |
-~ |
- |
+ — + —
| |
I O | Q
-l A | —-A —
| | —
+ — +

syscall

trace

radare2 status

Today we release r1-1.2.2 and r2-0.1

First release of radare2

. radare |####4—————————— |
Codename: Seaking radiff | Hmmmmmmmmmmmmmmem |

rabin |#####EFEF—— I
rasm | #EHERRFHERER |
rax | ##HHHH R I

http://www.radare.org/get/radare-1.2.2.tar.gz

http://www.radare.org/get/radare2-0.1.tar.gz

20%
15%
50%
80%
50%

radare scripting: basics

Native scripting:
- Cryptic (or mnemonic) +fun
- Macro-based with lot of sugar
- Actions are radare commands

Language bindings:
- Perl, Python, Ruby, LUA, ...
- APl based on radare commands

In radare2:
- Full access to the internal API from the script bindings
- Looks for an automated way for generating bindings

radare scripting: macros and sugar

Syntax sugar enables multiple actions in a single line.

pr 128 @ esp > stack ; dump 128 bytes of stack

wx 90@@hit ; write 0x90 at every flag matching "hit’

3ds ;run 3 times 'ds' command (alias for debug !step)
?[4:$$]~[0] ; get 4 bytes from $$ (curseek) and grep 1* col
lecho byte="?[1:esi]~[0] ; print first byte where esi points
pd 20 @ eip ; Disassemble 20 opcodes at eip

Radare commands can be grouped in macros to be used
as functions with dynamic argument replacement.

(do-step num,!step $0,.!regs*,!dregs,pd 5 @eip,x 128 @esp)
.(do-step 10) ; "." command is for interpretting

radare scripting: iterators

Ilterators are macros used with the '@@' suffix.
“(for-functions,() C*~CF[3]#$@)”
pdf @@ .(for-functions)

A null-macro means 'return from macro'.

“” quotes a command to avoid interpretting internal chars

Macro commands separated by commas

" runs a subcommand and concatenates the result

C* lists all code metadata information

~CF[3] greps for lines matching CF and gets column 4

grep line number defined by next expression

$@ virtual variable inside macros that gives the number of
times the macro has been called as iterator.

radare scripting: jpeg recovery

def recover_exif(addr):

eval_set(“search.to”,”’$$”) (recover-exif,

seek(-200) e search.to=%$$
seek search(“Exif”) s -200
byte = get_byte(“$$”) s/ Exif
if byte == 0x45: ? [1:$$]-0x45
seek(-6) ?21)
write to_files(“dump™, “2M”) s -6

wT dump 2M)
def recover _iter(str): : run the macro!

r.cmd(“/ CASIO COMPUTER CO”) /cASIO COMPUTER CO

hits[] = flag_list(“hit0_") .(recover-exif) @@ hit0_
for hit in hits:

recover_exit(hitfaddr])

radare scripting: code analysis

Running this macro while stepping in debugger adds
comments to mark branches as likely/unlikely.

(step-post-anal

?z ao@oeip~type = cond’
?2()

?eip- ao@oeip~jump =[2]
??CC likely@oeip
?2()

CC unlikely@oeip)

e cmd.prompt=.(step-post-anal)

?z (true if zero length string)

??() return from macro if previous conditional matches

[OxB7F92FCB]> ao@oeip
pas = jz sub_0xb7f93028
index =0

size =2

stackop = unknown(0)
type = conditional-jump
bytes = 7440

offset = Oxb7f92fe6

ref = 0x00000000

jump = 0xb7f93028

fail = Oxb7f92fe8

CC likely @ oeip ; adds a comment ('likely') at oeip (old eip address)

radare debugger

One of the 10 plugins enables radare to attach to processes
and work with its memory like if it was a plain file.

Commands are sent via the system() io hook of the plugin
Support for ptrace (linux/bsd/osx), w32 and some mach(osx)
Remoting is done with socket connections:

radare listen://:9999

radare connect://172.26.3.22:9999/dbg:///bin/ls

Commands run in local, io and debug commands networked

radare demo

... demo here

Questions?

http://www.radare.org

ktxby!

»}))} .
J-}m)hu_, ‘:‘!‘(«
t(<ﬁ<(‘

"W
FJUCKYEANSEAKING.COM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

