
radare2: from forensics to
bindiffing

nibble <nibble@develsec.org> (@nibble_ds)

pancake <pancake@nopcode.org> (@trufae)

@radareorg

Introduction

radare was born as a forensics tool

 - 64 bit addressing

 - multiple searching methods (aes, bytes, binmask..)

 - flags (mark with name, offset and size)

 - local and remote io (rap:// w32:// dbg:// ..)

New stuff:

 - filesystems and partitions

 - zoom mode (overview of file)

 - base64 encoding/decoding

 - magic templates

 - scripting in Vala (fast!)

Demo

Opening a remote disk and search for a string

 $ sudo r2 -n rap://:9999

 $ r2 -n rap://127.0.0.1:9999//dev/sda

 > / hello world

 f hit0_0 11 0xfad040

 > ./ hello world

 > ? hit0_0

 0xfad040

 > x @ 0xfad040

Search methods

Keyword:

 - regular expressions (/e)

 - text (string, wide string, utf8, ..) (/w)

 - hexpair buf + binary mask (/x)

Patterns:

 - repeated sequences of bytes (/p)

 - expanded AES keys (/A)

Analysis:

 - references to addresses (call, jmp, ..) (/a)

 - opcodes matching a given expreg (/c)

Signatures

You can create and find hexpair-based templates.

 - automatic binary masks based on opcode args

 - useful for statically linked bins

 - find inlined or dupped symbols

 "z is for zignature"

 > zg ls > ls.zignaturez

 > . ls.zignaturez

 > .z/

Magic templates

magic(4) is a common library in *NIX systems which

uses a db to identify and parse data
 > pm

 data

to create our own templates to parse memory data
 > !vim test.mgc

 > pm test.mgc

 $ ls file-*/magic/Magdir

Magic example

This is a example of the file format.

 0 long 0 This is a null reference

 0 byte x one %d,

 >4 byte x two %d,

 >8 string FOO (type is foo)

 >8 string BAR (type is bar)

 >12 long&0xff >0x70 invalid type

Formatted memory

There’s also a native formatted print command:

 > pf [format] [space separated field names]

 [0x04d80480]> pf dis next length string

 next: 0x4d80480: 0x4d80520

 length: 0x4d80484: 12

 string: 0x4d80488: "backandforth"

Scripting

libr/include files are described in swig/vapi/*.vapi

valaswig can translate those vapi files into working

bindings for many scripting languages:

 - python, perl, ruby, lua, java, guile, go, and vala

* Run from r2 prompt with the #! command

* Run as a standalone program using the r2-swig

Scripting demo

 [0x8048404]> #!vala

 > print ("0x%08llx\n", core.num.get ("entry0"));

 0x080498d0

 [0x8048404]> #!python

 > core.cmd0 ("pd")

 > core.cons.flush ()

 0x08049900 0 55 push ebp

 0x08049901 4+ 89e5 mov ebp, esp

 0x08049903 4 53 push ebx

 0x08049904 8+ 83ec04 sub esp, 0x4

Filesystems

Supports ext2, ntfs, vfat, reiserfs, ... based on BURG.
 $ r2 -nw diskimg.ext2

 > m ext2 /mnt 0

 > md /mnt

 foo

 > mg /mnt/foo

 Hello World

 > mo /mnt/foo

 offset = 0x37490

 size = 12

 > ps @ 0x37490:12

 Hello World

 > w Diiee @ 0x37490

 > ms # mountpoint shell

Partitions

Based on GRUB code:

 - Supports msdos, gpt, bsd, apple, sun, and more

 $ r2 -n /dev/sda

 > mp msdos 0

 0 83 0x087e00 0x0865f9a00

 1 82 0x0865f9a00 0x08168d5c00

 2 83 0x08168d5c00 0x081ebbc5600

 3 83 0x081ebbc5600 0x081ffd62800

Bindiffing

- What is bindiffing?

- Why is this useful?

 - Patched bins

 - Analyze backdoored bins

 - Find new functions (maybe non-documented)

 - Locate different implementations between

 functions in similar bins

Plain text diffing vs Binary diffing

- Text/Code is written in a natural way for humans

- Can be splitted by lines

- Doesn’t exist dependencies/references between

 one line and another

- One "instruction" is always coded the same

- There isn’t intrinsic data to extract for each line

Troubles

- Discard useless data

 - Padding

 - Uninitialized data

 - Useless sections/segments

- Tokenization

 - Several Options: Fcns, BBs, Opcodes, Bytes

 - Combination

- Deltas

- Presentation

Steps

1.- Code Analysis (Do you remember RAnal? ;)

 - Find functions and bb’s (recursively)

 - Extract data from opcodes

2.- Fingerprint BB’s

3.- Fingerprint Fcn’s based on BB’s

4.- Function matching by name (exports)

5.- Function matching based on fingerprints

6.- BB matching

Fingerprinting

- Use of Binary masks

- RAnal info

- Graph based metrics

BB/Fcn Diffing

Levenshtein distance relative to entity size

 Minimum number of edits needed to transform one string into

 the other

Example:

 "rooted" vs "roted" -> d = 1

 "rooted" vs "r-ooted" -> d = 1

 "rooted" vs "r-oted" -> d = 1

 "rooted" vs "rooted---" -> d = 3

 "rooted" vs "-roo--ted" -> d = 3

Demos

- Demo 1: Simple diff

- Demo 2: Diff between similar apps

- Demo 3: Backdoored bin

And... a little surprise

ragui: the ui

It’s not yet ready for daily use..

 - work in progress

 - based on GNOME technologies

 - runs on Windows/OSX/Linux/BSD without changes

 - show screenshots and demo

Questions?

radare2: from forensics to
bindiffing

nibble <nibble@develsec.org> (@nibble_ds)

pancake <pancake@nopcode.org> (@trufae)

@radareorg

