
Reversing with
Radare2
pancake@OverdriveCon2016



Who am I?

pancake aka Sergi Alvarez i Capilla

Twitter: @trufae @radareorg

Web: http://rada.re

Currently working as a Mobile Security Analyst at NowSecure, author of radare and many 
other open-source tools, also worked as a Forensic Analyst, full-stack developer, embedded 
firmware hacker, teacher and eventual reverse engineer.

http://rada.re


What is Reversing?

Understanding the internal mechanisms in a piece of software or hardware in order to:

● Find vulnerabilities
● Bypass security protections (cracks/exploits)
● Extend its functionalities
● Understand how it works
● Find hidden features
● Fix bugs



What is Radare2?

Free and open-source hexadecimal editor, disassembler and debugger created by me in 
2006 aiming to be modular, pluggable and orthogonal. Major rewrite of radare. (10yo)

Follow some of the UNIX design principles, written in C, portable, scriptable, orthogonal, 
flexible and very active project with a great community.

Release every 6 weeks. About 50 contributors on each release.

r2con is the congress around radare2. 120 attendees in the first edition (2016).



What is exactly Radare2?

Framework to ease several reverse enginering and other low level tasks.

● Composed by a bunch of libraries written in C
○ Automatic bindings generation with valabind
○ Extensible via plugins

● Provides different tools that make use of them
○ ls /usrbin/r*2
○ Extensible via scripts

● Portable as hell (stick to posix and requires at least 1MB of disk)
○ Supports native and remote targets without needing recompilation



What can r2 do for me?

● Better ask yourself about what it can’t do



What Can It Do?
● Disassemble binaries of several architectures, operating systems.
● Analyze code, data, references, structures, …
● Debugging, tracing, exploiting, …
● Binary manipulation, code injection, patching, “optimizing”, …
● Mount filesystems, detect partitions, carve for known file formats, …
● Extract information and metrics from binaries for classification
● Find differences between two files
● Compute checksums of the blocks in a file
● Kernel analysis and debugging
● Play 2048 and even Order pizzas online



Plugins

● Understand a lot of file formats (rabin2 -L)
○ Even corrupted ones!

● Assemble/Disasm many CPUs (rasm2 -L)
○ Tune it via asm.arch, asm.bits and asm.cpu

● IO plugins abstract filesystem access (r2 -L)
○ Handle ptrace/remoting/kernel/sockets/…

● Debugger plugins (r2 -qcdh --)
○ Bochs, GDB, Native, Remote, …

● Crypto / Checksums (rahash2 -L)



r2pm: Package Manager

Provides an easy way to install dependencies and 
plugins for r2 in the user home directory or system wide.

● KeyStone assembler
● RetDec decompiler
● Unicorn emulator
● Disassemblers for more architectures
● R2 api bindings
● And more!...



Introducing the Shell

The main interaction is happening in the shell. R2 offers a powerful and expressive (but 
sometimes confusing) way to run commands.

The user usually needs to learn less than 10 commands to do most of the common tasks, so 
it’s not really an excuse to not learn it.

Let’s see some very basic introduction before going into the practice.



Basic Commands

● Move: ‘s’ stands for seek, use @ for temporal seeks
● Hexdump: x
● Disasm: pd
● Write Hexpairs: wx
● Write Assembly: wa
● Analyze All Code: aa
● Help: append ‘?’ to any command
● Quit: q



Solving a Crackme

(demo)

● Explain basic commands
● How to get help
● Explain visual mode
● Strings with rabin2 -qz
● Extract the password
● Patch to make it always accept the password



Extract Information

Rabin2 and the i command

● Entrypoint (rabin2 -e)
● Symbols (-s)
● Imports (-i)
● Libraries (-l)
● Strings (-qz)
● Relocs (-r)



Forensics

The original objective of this tool was to serve as a computer forensics tool to search for 
patterns in a hard disk or memory dump and recover information from there.

● Support partitions and several filesystems (GRUB)
● File magic functionality integrated
● Parse file format headers and data structures
● Print data in different formats, raw, base64, hex
● Compute and compare per block checksums.
● Binary diffing and entropy calculations



Graphing

● Graph Basic blocks
● Branch Lines
● Graph Calls / Refs
● Color Schemes
● Entropy
● Section Ranges
● Exploration Bar



Debugging

Running a program or attaching to a process

● read/write registers
● read/write memory and list maps
● step/breakpoints/continue
● stack telescoping, 
● heap analysis
● code injection
● file descriptor manipulations



Frida, LLDB, Bochs, WinDBG, …

Also an option as debuggers backends for radare2.

● Frida is a dynamic programmable tracer and code injection framework
○ More expressive shell (not just js)
○ Static analysis and 
○ Low level code patching and injection

● LLDB is de-facto debugger in the Apple ecosystem
○ Debug iWatch, OSX or iOS apps without jailbreak via r2lldb
○ Much better disassembly

● Bochs/GDBServer/WinDBG… just as remote debuggers



r2frida Demo

Disabling features in Twitter at runtime

[0x100e957fd]> =!ic TwitterAPI~00e957fd

0x0000000100e957fd - didGetSearchResults:info:

[0x100e957fd]> "wa xor rax,rax;ret"

[0x100e957fd]> wx 554889e5



Debugging Demo

● Step Into/Over
● Change program counter
● Visualize the stack contents
● Tracing
● Using breakpoints



rarun2

Tool to define execution profiles to specify program environment, arguments, permissions, 
directories, input/output, etc. This tool and APIs are used by the debugger.

$ man rarun2

$ rarun2 > target.rr2

$ r2 -R target.rr2



Exploiting The Dirty COW 
(CVE 2016-5195)

$ r2pm -i dirtycow

$ r2 dcow:///etc/services

> 30w you are vulnerable

$ head /etc/services

(demo with an old livecd)



Analysis

● Identify functions
● Function signatures (zignatures)
● List them
● Find references
● Detect local variables
● Stack accesses
● Resolve function signatures
● Resolve syscalls



Analysis Demo

● Analyze binary, find references to strings
● Listing functions
● Cyclomatic complexity
● Enumerate syscalls in Go binary
● Resolve strings (objc, or Go)



ESIL

Evaluable Strings Intermediate Language

● Code emulation
● Branch prediction
● Find read/write register in functions
● Resolve Syscalls
● Assisted Debugging
● Complex search queries



ESIL demo

Use ESIL to resolve a strings that are computed in more than one instruction.

Resolve crackme using ESIL.

● Initialize stack with aeim, Visualize stack
● Set program counter to sym._checkPassword
● Step into the decrypt loop until the string is clear



Scripting

The ability to automate a sequence of actions:

● Scripting using r2 commands
● Using r2pipe (available for lot of languages)
● Using Native bindings (not recommended)
● Using RLang (#! hashbang)



Interpreting r2 scripts

Using the -i flag and the . command

● Conditionals
● Macros
● Quoted commands
● Comments



Python, Node, C#, Ruby..

The most recommended command bindings for scripting.

Wraps access to r_core_cmd_str(), provides JSON helpers

● Native Backend
● Remote via HTTP
● Pipes
● Sockets

Also possible to write asm and io plugins as well as interacting with the debugger



r2pipe demo

Using Python and NodeJS to interact with r2.

● Run commands
● Parse output JSON
● Sync/Async
● Pipe/TCP/HTTP/RAP/Native

Other languages:

● C#, Go, Vala, Java, Rust Ruby, Lisp, Erlang, Swift, Ocaml, ..



User Interfaces

● Console modes (Prompt, Visual, Graph, Panels, Columns)
● WebUI (r2 -c=H) Android Material Design
● Native User Interfaces (c#-mfc, qt, gtk2/3, ..)

○ Most of them unreleased, unstable, limited or unmaintained
○ Gradare, Ragui, Bokken, ..

Console will always be more complete than any GUI.

Looking for web developers!



WebUI demo

(demo)



Questions?

�



EOF


